Skip to main content
Log in

Simple synthesis of porous carbon materials for high-performance supercapacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Porous carbon materials have been prepared by direct carbonization of potassium stearate in inert atmosphere without any further activation. The porous carbon materials exhibited a typical hierarchical pore size distribution, thereby rendering them the excellent supercapacitive performance. All electrochemical measurements were performed in a three-electrode system using 6 M KOH as the electrolyte. CK800 can deliver a high specific capacitance of 208 F g−1 (36.1 µF cm−2) at a current density of 0.5 A g−1. As the current density increased up to 30 A g−1, a high specific capacitance of 120 F g−1(20.8 µF cm−2) still can be maintained. 90.86 % of the specific capacitance was retained even after 5000 charge/discharge cycles at a current density of 2 A g−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Conway B (1999) Electrochemical supercapacitor. Scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  2. Sarangapani S, Tilak B, Chen CP (1996) Materials for electrochemical capacitors theoretical and experimental constraints. J Electrochem Soc 143(11):3791–3799

    Article  CAS  Google Scholar 

  3. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Sci Mag 321(5889):651–652

    CAS  Google Scholar 

  4. Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25(37):5336–5342

    Article  CAS  Google Scholar 

  5. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4(4)

  6. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  Google Scholar 

  7. Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev 3(5):424–473

    CAS  Google Scholar 

  8. Ahmadpour A, Do D (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon 34(4):471–479

    Article  CAS  Google Scholar 

  9. Maciá-Agulló J, Moore B, Cazorla-Amorós D, Linares-Solano A (2004) Activation of coal tar pitch carbon fibres: physical activation vs. chemical activation. Carbon 42(7):1367–1370

    Article  Google Scholar 

  10. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22(45):5202–5206

    Article  CAS  Google Scholar 

  11. Su F, Poh CK, Chen JS, Xu G, Wang D, Li Q, Lin J, Lou XW (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4(3):717–724

    Article  CAS  Google Scholar 

  12. Ćirić-Marjanović G, Pašti I, Gavrilov N, Janošević A, Mentus S (2013) Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. Chem Pap 67(8):781–813

    Google Scholar 

  13. Xu B, Duan H, Chu M, Cao G, Yang Y (2013) Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J Mater Chem A 1(14):4565–4570

    Article  CAS  Google Scholar 

  14. Xu B, Zheng D, Jia M, Cao G, Yang Y (2013) Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim Acta 98:176–182

    Article  CAS  Google Scholar 

  15. Luo H, Yang Y, Chen Y, Zhang J, Zhao X (2016) Structure and electrochemical performance of highly porous carbons by single-step potassium humate carbonization for application in supercapacitors. J Appl Electrochem 46:1–9

    Article  Google Scholar 

  16. Puthusseri D, Aravindan V, Madhavi S, Ogale S (2014) 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ Sci 7(2):728–735

    Article  CAS  Google Scholar 

  17. Sevilla M, Fuertes AB (2013) A general and facile synthesis strategy towards highly porous carbons: carbonization of organic salts. J Mater Chem A 1(44):13738–13741

    Article  CAS  Google Scholar 

  18. Gregg SJ, Sing KSW, Salzberg H (1967) Adsorption surface area and porosity. J Electrochem Soc 114(11):279C–279C

    Article  Google Scholar 

  19. Dollimore D, Spooner P, Turner A (1976) The BET method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surf Technol 4(2):121–160

    Article  CAS  Google Scholar 

  20. Gregg S, Sing K (1982) Surface area and porosity. Academic Press, New York, p 248

    Google Scholar 

  21. Stoeckli H, Rebstein P, Ballerini L (1990) On the assessment of microporosity in active carbons, a comparison of theoretical and experimental data. Carbon 28(6):907–909

    Article  CAS  Google Scholar 

  22. Zhang LL, Zhao X, Ji H, Stoller MD, Lai L, Murali S, Mcdonnell S, Cleveger B, Wallace RM, Ruoff RS (2012) Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy Environ Sci 5(11):9618–9625

    Article  CAS  Google Scholar 

  23. He X, Zhang H, Zhang H, Li X, Xiao N, Qiu J (2014) Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. J Mater Chem A 2(46):19633–19640

    Article  CAS  Google Scholar 

  24. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050

    Article  Google Scholar 

  25. Kakaei K (2015) Decoration of graphene oxide with Platinum Tin nanoparticles for ethanol oxidation. Electrochim Acta 165:330–337

    Article  CAS  Google Scholar 

  26. Wang Y, Su F, Wood CD, Lee JY, Zhao XS (2008) Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind Eng Chem Res 47(7):2294–2300

    Article  CAS  Google Scholar 

  27. Kakaei K, Hasanpour K (2014) Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. J Mater Chem A 2(37):15428–15436

    Article  CAS  Google Scholar 

  28. Gao S, Geng K, Liu H, Wei X, Zhang M, Wang P, Wang J (2015) Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ Sci 8(1):221–229

    Article  CAS  Google Scholar 

  29. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299

    Article  CAS  Google Scholar 

  30. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095

    Article  CAS  Google Scholar 

  31. Kulkarni SB, Patil UM, Shackery I, Sohn JS, Lee S, Park B, Jun S (2014) High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. J Mater Chem A 2(14):4989–4998

    Article  CAS  Google Scholar 

  32. Biniak S, Szymański G, Siedlewski J, Światkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12):1799–1810

    Article  CAS  Google Scholar 

  33. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840

    Article  CAS  Google Scholar 

  34. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447

    Article  CAS  Google Scholar 

  35. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    CAS  Google Scholar 

  36. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313

    Article  CAS  Google Scholar 

  37. Jiang H-L, Liu B, Lan Y-Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 133(31):11854–11857

    Article  CAS  Google Scholar 

  38. Wang Y, Chang B, Guan D, Dong X (2015) Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. J Solid State Electrochem 19(6):1783–1791

    Article  CAS  Google Scholar 

  39. Kishore B, Shanmughasundaram D, Penki TR, Munichandraiah N (2014) Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors. J Appl Electrochem 44(8):903–916

    Article  CAS  Google Scholar 

  40. Luo H-M, Yang Y-F, Sun Y-X, Zhao X, Zhang J-Q (2015) Preparation of lactose-based attapulgite template carbon materials and their electrochemical performance. J Solid State Electrochem 19(4):1171–1180

    Article  CAS  Google Scholar 

  41. Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) Synthesis of CO3 O4/SnO2@ MnO2 core–shell nanostructures for high-performance supercapacitors. J Mater Chem A

  42. Fang D-L, Chen Z-D, Liu X, Wu Z-F, Zheng C-H (2012) Homogeneous growth of nano-sized β-Ni (OH)2 on reduced graphene oxide for high-performance supercapacitors. Electrochim Acta 81:321–329

    Article  CAS  Google Scholar 

  43. Hulicova D, Kodama M, Hatori H (2006) Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater 18(9):2318–2326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (NSFC, No. 21364004) and the Provincial Natural Science Foundation of Gansu (No. 1506RJZA102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, HM., Chen, H., Chen, YZ. et al. Simple synthesis of porous carbon materials for high-performance supercapacitors. J Appl Electrochem 46, 703–712 (2016). https://doi.org/10.1007/s10800-016-0958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0958-9

Keywords

Navigation