Skip to main content
Log in

2-Methylimidazole-modulated UiO-66 as an effective photocatalyst to degrade Rhodamine B under visible light

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report herein a versatile new approach for improving the photodegradation performance of UiO-66 by introducing 2-methylimidazole through a straightforward in situ one-pot solvothermal method. The resultant complex UiO-66-M-0.7 has demonstrated a reaction rate constant of 0.0183 min−1 in the photodegradation of rhodamine B under visible light, which is 69.4% higher than that with unmodulated UiO-66. Further investigation has confirmed that the improved activity can be attributed to enhanced adsorption of the dye by the photocatalyst during the adsorption–desorption equilibrium. The main active species involved in the photodegradation process have been identified as h+ and O2·. In addition, the complex has shown ideal stability in recycling tests and excellent activity in the degradation of methylene blue. This study provides a novel perspective for the future design of various photocatalysts with superior performance.

Graphic abstract

2-Methylimidazole-modulated UiO-66 exhibits increased catalytic performance in the photodegradation of rhodamine B (RhB) under visible light because of enhanced adsorption of RhB on the catalyst during the adsorption-desorption equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    CAS  Google Scholar 

  2. Wang HL, Zhang LS, Chen ZG, Hu JQ, Li SJ, Wang ZH, Liu JS, Wang XC (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244

    CAS  Google Scholar 

  3. Anwer H, Mahmood A, Lee J, Kim KH, Park JW, Yip ACK (2019) Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res 12:955–972

    CAS  Google Scholar 

  4. Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Rev 3:55–67

    CAS  Google Scholar 

  5. Md Ishak NAI, Kamarudin SK, Timmiati SN (2019) Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview. Mater Res Express 6:112004

    Google Scholar 

  6. Zhang H, Wang XF, Chen CC, An CH, Xu YN, Dong YY, Zhang QY, Wang YJ, Jiao LF, Yuan HT (2016) Facile synthesis of diverse transition metal oxide nanoparticles and electrochemical properties. Inorg Chem Front 3:1048–1057

    CAS  Google Scholar 

  7. Kusmierek E (2020) Semiconductor electrode materials applied in photoelectrocatalytic wastewater treatment—an overview. Catalysts 10:439

    CAS  Google Scholar 

  8. Chen XB, Mao SS (2007) Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    CAS  Google Scholar 

  9. Gusain R, Gupta K, Joshi P, Khatri OP (2019) Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv Colloid Interface Sci 272:102009

    CAS  Google Scholar 

  10. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    CAS  Google Scholar 

  11. Hitam CNC, Jalil AA (2020) A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. J Environ Manage 258:110050

    CAS  Google Scholar 

  12. Bailón-García E, Elmouwahidi A, Álvarez MA, Carrasco-Marín F, Pérez-Cadenas AF, Maldonado-Hódar FJ (2017) New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Appl Catal B Environ 201:29–40

    Google Scholar 

  13. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev 81:536–551

    CAS  Google Scholar 

  14. Zhao Q, Wang KW, Wang JL, Guo Y, Yoshida A, Abudula A, Guan GQ (2019) Cu2O nanoparticle hyper-cross-linked polymer composites for the visible-light photocatalytic degradation of methyl orange. ACS Appl Nano Mater 2:2706–2712

    CAS  Google Scholar 

  15. Dong HR, Zeng GM, Tang L, Fan CZ, Zhang C, He XX, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    CAS  Google Scholar 

  16. Wang Y, Fang HB, Zheng YZ, Ye RQ, Tao X, Chen JF (2015) Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light-driven photocatalytic and antibacterial activity. Nanoscale 7:19118–19128

    CAS  Google Scholar 

  17. Vaiano V, Matarangolo M, Sacco O, Sannino D (2017) Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. Appl Catal B Environ 209:621–630

    CAS  Google Scholar 

  18. Low JX, Yu JG, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694

    Google Scholar 

  19. Fu JW, Yu JG, Jiang CJ, Cheng B (2018) g-C3N4-based heterostructured photocatalysts. Adv Energy Mater 8:1701503

    Google Scholar 

  20. Meng AY, Zhang LY, Cheng B, Yu JG (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31:1807660

    Google Scholar 

  21. Wang B, Cai HR, Shen SH (2019) Single metal atom photocatalysis. Small. Methods 3:1800447

    Google Scholar 

  22. Quan HQ, Gao YF, Wang WZ (2020) Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorg Chem Front 7:817–838

    CAS  Google Scholar 

  23. Chen YZ, Jiang DJ, Gong ZQ, Li QL, Shi RR, Yang ZX, Lei ZY, Li JY, Wang LN (2020) Visible-light responsive organic nano-heterostructured photocatalysts for environmental remediation and H2 generation. J Mater Sci Technol 38:93–106

    Google Scholar 

  24. Chai B, Liu C, Yan JT, Ren ZD, Wang ZJ (2018) In-situ synthesis of WO3 nanoplates anchored on g-C3N4 Z-scheme photocatalysts for significantly enhanced photocatalytic activity. Appl Surf Sci 448:1–8

    CAS  Google Scholar 

  25. Chai B, Yan JT, Fan GZ, Song GS, Wang CL (2020) In situ fabrication of CdMoO4/g-C3N4 composites with improved charge separation and photocatalytic activity under visible light irradiation. Chin J Catal 41:170–179

    CAS  Google Scholar 

  26. Li B, Wen HM, Cui YJ, Zhou W, Qian GD, Chen BL (2016) Emerging multifunctional metal-organic framework materials. Adv Mater 28:8819–8860

    CAS  Google Scholar 

  27. Yuan S, Feng L, Wang KC, Pang JD, Bosch M, Lollar C, Sun YJ, Qin JS, Yang XY, Zhang P, Wang Q, Zou LF, Zhang YM, Zhang LL, Fang Y, Li JL, Zhou HC (2018) Stable metal-organic frameworks: design, synthesis, and applications. Adv Mater 30:1704303

    Google Scholar 

  28. Abednatanzi S, Gohari Derakhshandeh P, Depauw H, Coudert FX, Vrielinck H, Van Der Voort P, Leus K (2019) Mixed-metal metal-organic frameworks. Chem Soc Rev 48:2535–2565

    CAS  Google Scholar 

  29. Zhao X, Wang YX, Li DS, Bu XH, Feng PY (2018) Metal-organic frameworks for separation. Adv Mater 30:1705189

    Google Scholar 

  30. Lin RB, Xiang SC, Zhou W, Chen BL (2020) Microporous metal-organic framework materials for gas separation. Chem 6:337–363

    CAS  Google Scholar 

  31. Yi FY, Chen DX, Wu MK, Han L, Jiang HL (2016) Chemical sensors based on metal-organic frameworks. ChemPlusChem 81:675–690

    CAS  Google Scholar 

  32. Li H, Wang KC, Sun YJ, Lollar CT, Li JL, Zhou HC (2018) Recent advances in gas storage and separation using metal–organic frameworks. Mater Today 21:108–121

    CAS  Google Scholar 

  33. Xu CP, Fang RQ, Luque R, Chen LY, Li YW (2019) Functional metal–organic frameworks for catalytic applications. Coord Chem Rev 388:268–292

    CAS  Google Scholar 

  34. Yang D, Gates BC (2019) Catalysis by metal organic frameworks: perspective and suggestions for future research. ACS Catal 9:1779–1798

    CAS  Google Scholar 

  35. Zhang Q, Cui YJ, Qian GD (2019) Goal-directed design of metal–organic frameworks for liquid-phase adsorption and separation. Coord Chem Rev 378:310–332

    CAS  Google Scholar 

  36. Han X, Yang SH, Schröder M (2019) Porous metal–organic frameworks as emerging sorbents for clean air. Nat Rev Chem 3:108–118

    CAS  Google Scholar 

  37. Yang J, Yang YW (2020) Metal-organic frameworks for biomedical applications. Small 16:1906846

    CAS  Google Scholar 

  38. Wen MC, Mori K, Kuwahara Y, An TC, Yamashita H (2017) Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Appl Catal B: Environ 218:555–569

    CAS  Google Scholar 

  39. Dhakshinamoorthy A, Asiri AM, Garcia H (2019) 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv Mater 31:1900617

    CAS  Google Scholar 

  40. Zhang X, Wang J, Dong XX, Lv YK (2020) Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere 242:125144

    CAS  Google Scholar 

  41. Li DD, Kassymova M, Cai XC, Zang SQ, Jiang HL (2020) Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord Chem Rev 412:213262

    CAS  Google Scholar 

  42. Mosleh S, Rahimi MR, Ghaedi M, Dashtian K, Hajati S (2016) Photocatalytic degradation of binary mixture of toxic dyes by HKUST-1 MOF and HKUST-1-SBA-15 in a rotating packed bed reactor under blue LED illumination: central composite design optimization. RSC Adv 6:17204–17214

    CAS  Google Scholar 

  43. Wang XJ, Zhao XL, Zhang DQ, Li GS, Li HX (2018) Microwave irradiation induced UIO-66-NH2 anchored on graphene with high activity for photocatalytic reduction of CO2. Appl Catal B Environ 228:47–53

    CAS  Google Scholar 

  44. Li YJ, Hou GS, Yang J, Xie J, Yuan XL, Yang H, Wang MM (2016) Facile synthesis of MOF 235 and its superior photocatalytic capability under visible light irradiation. RSC Adv 6:16395–16403

    CAS  Google Scholar 

  45. Rad M, Dehghanpour S (2016) ZnO as an efficient nucleating agent and morphology template for rapid, facile and scalable synthesis of MOF-46 and ZnO@MOF-46 with selective sensing properties and enhanced photocatalytic ability. RSC Adv 6:61784–61793

    CAS  Google Scholar 

  46. Aleksandrzak M, Sielicki K, Mijowska E (2020) Enhancement of photocatalytic hydrogen evolution with catalysts based on carbonized MOF-5 and g-C3N4. RSC Adv 10:4032–4039

    CAS  Google Scholar 

  47. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Google Scholar 

  48. Zou D, Liu D (2019) Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Mater Today Chem 12:139–165

    CAS  Google Scholar 

  49. Winarta J, Shan BH, McIntyre SM, Ye L, Wang C, Liu JC, Mu B (2019) A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal–organic framework. Cryst Growth Des 20:1347–1362

    Google Scholar 

  50. Shen LJ, Liang SJ, Wu WM, Liang RW, Wu L (2013) CdS-decorated UiO–66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. J Mater Chem A 1:11473–11482

    CAS  Google Scholar 

  51. He J, Wang JQ, Chen YJ, Zhang JP, Duan DL, Wang Y, Yan ZY (2014) A dye-sensitized Pt@UiO-66(Zr) metal-organic framework for visible-light photocatalytic hydrogen production. Chem Commun 50:7063–7066

    CAS  Google Scholar 

  52. Li JT, Musho T, Bright J, Wu NQ (2019) Functionalization of a metal-organic framework semiconductor for tuned band structure and catalytic activity. J Electrochem Soc 166:H3029–H3034

    CAS  Google Scholar 

  53. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater 22:6632–6640

    CAS  Google Scholar 

  54. Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W (2013) Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532

    CAS  Google Scholar 

  55. Long JL, Wang SB, Ding ZX, Wang SC, Zhou YG, Huang L, Wang XX (2012) Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem Commun 48:11656–11658

    CAS  Google Scholar 

  56. Su Y, Zhang Z, Liu H, Wang Y (2017) Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl Catal B Environ 200:448–457

    CAS  Google Scholar 

  57. Peng XX, Ye L, Ding YC, Yi LC, Zhang C, Wen ZH (2020) Nanohybrid photocatalysts with ZnIn2S4 nanosheets encapsulated UiO-66 octahedral nanoparticles for visible-light-driven hydrogen generation. Appl Catal B Environ 260:118152

    CAS  Google Scholar 

  58. Sha Z, Chan HS, Wu JS (2015) Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. J Hazard Mater 299:132–140

    CAS  Google Scholar 

  59. Ding J, Yang ZQ, He C, Tong XW, Li Y, Niu XJ, Zhang HG (2017) UiO-66(Zr) coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation. J Colloid Interf Sci 497:126–133

    CAS  Google Scholar 

  60. Zhang Y, Zhou JB, Feng QQ, Chen X, Hu ZS (2018) Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst. Chemosphere 212:523–532

    CAS  Google Scholar 

  61. Wang L, Jin PX, Duan SH, Huang JW, She HD, Wang QZ, An TC (2019) Accelerated Fenton-like kinetics by visible-light-driven catalysis over iron(III) porphyrin functionalized zirconium MOF: effective promotion on the degradation of organic contaminants. Environ Sci: Nano 6:2652–2661

    CAS  Google Scholar 

  62. Hu P, Zhao ZX, Sun XD, Muhammad Y, Li J, Chen SB, Pang CJ, Liao TT, Zhao ZX (2019) Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes. Chem Eng J 356:329–340

    CAS  Google Scholar 

  63. Zhang XD, Yang Y, Lv XT, Wang YX, Liu N, Chen D, Cui LF (2019) Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework. J Hazard Mater 366:140–150

    CAS  Google Scholar 

  64. Zhang GY, Zhuang YH, Shan D, Su GF, Cosnier S, Zhang XJ (2016) Zirconium-based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal Chem 88:11207–11212

    CAS  Google Scholar 

  65. Garibay SJ, Cohen SM (2010) Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem Commun 46:7700–7702

    CAS  Google Scholar 

  66. Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C (2011) Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater 23:1700–1718

    CAS  Google Scholar 

  67. Sha Z, Wu JS (2015) Enhanced visible-light photocatalytic performance of BiOBr/UiO-66(Zr) composite for dye degradation with the assistance of UiO-66. RSC Adv 5:39592–39600

    CAS  Google Scholar 

  68. Tong XW, Yang ZQ, Feng JN, Li Y, Zhang HG (2017) BiOCl/UiO-66 composite with enhanced performance for photo-assisted degradation of dye from water. Appl Organomet Chem 32:4049

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the National Key R&D Program of China (2018YFC0910602), the National Natural Science Foundation of China (61775145/61525503/61620106016/61835009/81727804/61722508), (Key) Project of Department of Education of Guangdong Province (2015KGJHZ002/2016KCXTD007), Shenzhen Basic Research Project (JCYJ20190808123401666/JCYJ20170412110212234/JCYJ20170412105003520), and Guangdong Natural Science Foundation Innovation Team (2014A030312008). Dr. Shumu Li and Dr. Yuan Sun are acknowledged for their support in the LC-MS test and the photoelectrochemical measurement, respectively. We thank International Science Editing for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Hu, R., Ye, S. et al. 2-Methylimidazole-modulated UiO-66 as an effective photocatalyst to degrade Rhodamine B under visible light. J Mater Sci 56, 1577–1589 (2021). https://doi.org/10.1007/s10853-020-05267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05267-1

Navigation