Skip to main content
Log in

Kinetics and coupled dynamics of dewetting and chemical reaction in Si/\(\hbox {SiO}_2\)/Si system

  • Ceramic
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on the observation of a coupling between the dewetting of a Si layer on \(\hbox {SiO}_{{2}}\) induced by surface/interface energy minimization and the etching between both materials due to the \(\hbox {Si}+\hbox {SiO}_{2}\longrightarrow 2\)\(\hbox {SiO}^\uparrow _g\) reaction. In the limit of a thin \(\hbox {SiO}_{{2}}\) layer (\(\le 10 \,\hbox {nm}\)) sandwiched between a Si layer and a Si handle wafer, the front of Si dewetting and the front of \(\hbox {SiO}_{{2}}\) etching coexist in a narrow region. The interplay between both phenomena gives rise to specific morphologies. We show that extended Si fingers formed by dewetting are stabilized with respect to Rayleigh–Plateau-type instability over tenth of microns thanks to a localized etching of the \(\hbox {SiO}_{{2}}\) layer. The breakup of this structure occurs abruptly by an unzipping process combining dewetting and etching phenomena. We also put in evidence that Si rings are created with a thin \(\hbox {SiO}_{{2}}\) layer in the center. These processes are thermally activated with an activation energy of \(2.4\pm 0.5 \,\hbox {eV}\) and \(4.0\pm 0.5 \,\hbox {eV}\), respectively, for dewetting and the etching reaction. All these results highlight the respective roles of wetting and etching in Si/\(\hbox {SiO}_{{2}}\)/Si system dynamics and could be a stepping stone for the development of advanced processes based on Silicon-On-Insulator technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Eustathopoulos N (1998) Dynamics of wetting in reactive metal/ceramic systems. Acta Materiala 46(7):2319–2327

    CAS  Google Scholar 

  2. Dezellus O, Eustathopoulos N (2010) Fundamental issues of reactive wetting by liquid metals. J Mater Sci 45(16):4256–4264. https://doi.org/10.1007/s10853-009-4128-x

    Article  CAS  Google Scholar 

  3. Kumar Girish, Narayan Prabhu K (2007) Review of non-reactive and reactive wetting of liquids on surfaces. Adv Colloid Interface Sci 133(2):61–89

    Article  CAS  Google Scholar 

  4. Ohya M, Inoue D, Itoh H, Ichinokawa T (1996) Oscillation of wettability of molten Cu islands on SiO\(_2\). Surf Sci 369(1–3):169–176

    Article  CAS  Google Scholar 

  5. Ichinokawa T, Itoh H, Sakai Y (1999) Behaviors of small molten metal islands on several substrates. J Anal At Spectrom 14:405–408

    Article  CAS  Google Scholar 

  6. Kanai H, Sugihara S, Yamaguchi H, Uchimaru T, Obata N, Kikuchi T, Kimura F, Ichinokura M (2007) Wetting and reaction between Si droplet and SiO\(_2\) substrate. J Mater Sci 42:9529–9535. https://doi.org/10.1007/s10853-007-2090-z

    Article  CAS  Google Scholar 

  7. Wachsmuth D, Gebensleben T, Weiss D, Becker V, Alphei L, Becker J (2012) SiO gas emission and triple line dynamics of small silicon droplets on quartz. J Cryst Growth 355:122–128

    Article  CAS  Google Scholar 

  8. Saiz E, Tomsia AP, Suganuma K (2003) Wetting and strength issues at Al/alpha-alumina interfaces. J Eur Ceram Soc 23(15):2787–2796

    Article  CAS  Google Scholar 

  9. Curiotto S, Leroy F, Cheynis F, Müller P (2015) Self-propelled motion of Au-Si droplets on Si(111) mediated by monoatomic step dissolution. Surf Sci 632:1–8

    Article  CAS  Google Scholar 

  10. Curiotto S, Leroy F, Cheynis F, Müller P (2015) In-plane Si nanowire growth mechanism in absence of external Si flux. Nano Lett 15:4788–4792

    Article  CAS  Google Scholar 

  11. Curiotto S, Leroy F, Cheynis F, Müller P (2017) Surface-dependent scenarios for dissolution-driven motion of growing droplets. Sci Rep 7:902

    Article  Google Scholar 

  12. Nakata Satoshi, Hayashima Yuko (1998) Spontaneous dancing of a camphor scraping. J Chem Soc Faraday Trans 94:3655–3658

    Article  CAS  Google Scholar 

  13. Schmid AK, Bartelt NC, Hwang RQ (2000) Alloying at surfaces by the migration of reactive two-dimensional islands. Science 290:1561–1564

    Article  CAS  Google Scholar 

  14. Bollani M, Salvalaglio M, Benali A et al (2019) Templated dewetting of single-crystal sub-millimeter-long nanowires and on-chip silicon circuits. Nat Commun 10:5632

    Article  CAS  Google Scholar 

  15. Naffouti M, Backofen R, Salvalaglio M, Bottein T, Lodari M, Voigt A, David T, Benkouider A, Fraj I, Favre L, Ronda A, Berbezier I, Grosso D, Abbarchi M, Bollani M (2017) Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures. Sci Adv 3:eaao1472

    Article  Google Scholar 

  16. Leroy F, Borowik L, Cheynis F, Almadori Y, Curiotto S, Trautmann M, Barbe JC, Müller P (2016) How to control solid state dewetting: a short review. Surf Sci Rep 71(2):391–409

    Article  CAS  Google Scholar 

  17. Trautmann M, Cheynis F, Leroy F, Curiotto S, Pierre-Louis O, Muller P (2017) Dewetting of patterned solid films: towards a predictive modelling approach. Appl Phys Lett 110:263105

    Article  Google Scholar 

  18. Ono Y, Nagase M, Tabe M, Takahashi Y (1995) Thermal agglomeration of thin single-crystal Si on SiO2 in vacuum. Jpn J Appl Phys 34:1728–1735

    Article  CAS  Google Scholar 

  19. Nuryadi R, Ishikawa Y, Tabe M (2000) Formation and ordering of self-assembled Si islands by ultrahigh vacuum annealing of ultrathin bonded silicon-on-insulator structure. Appl Surf Sci 159–160:121–126

    Article  Google Scholar 

  20. Nuryadi R, Ishikawa Y, Ono Y, Tabe M (2002) Thermal agglomeration of single-crystalline Si layer on buried SiO\(_2\) in ultrahigh vacuum. J Vac Sci Technol B 20:167–172

    Article  CAS  Google Scholar 

  21. Legrand B, Agache V, Nys JP, Senez V, Stiénvenard D (2000) Formation of silicon islands on a silicon on insulator substrate upon thermal annealing. Appl Phys Lett 76:3271–3273

    Article  CAS  Google Scholar 

  22. Legrand B, Agache V, Mélin T, Nys JP, Senez V, Stiévenard D (2002) Thermally assisted formation of silicon islands on a silicon-on-insulator substrate. J Appl Phys 91:106–111

    Article  CAS  Google Scholar 

  23. Bussmann E, Cheynis F, Leroy F, Müller P, Pierre-Louis O (2011) Dynamics of solid thin-film dewetting in the silicon-on-insulator system. New J Phys 13:043017

    Article  Google Scholar 

  24. Cheynis F, Bussmann E, Leroy F, Passanante T, Müller P (2011) Dewetting dynamics of silicon-on-insulator thin films. Phys Rev B 84:245439

    Article  Google Scholar 

  25. Mullins WW (1957) Theory of thermal grooving. J Appl Phys 28(3):333–339

    Article  CAS  Google Scholar 

  26. Wong H, Voorhees PW, Miksis MJ, Davis SH (2000) Periodic mass shedding of a retracting solid film step. Acta Materiala 48(8):1719–1728

    Article  CAS  Google Scholar 

  27. Wang Y, Jiang W, Bao W, Srolovitz DJ (2015) Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies. Phys Rev B 91(4):045303

    Article  Google Scholar 

  28. Reiter G (1992) Dewetting of thin polymer-films. Phys Rev Lett 68(1):75–78

    Article  CAS  Google Scholar 

  29. Mukherjee Rabibrata, Sharma Ashutosh (2015) Instability, self-organization and pattern formation in thin soft films. Soft Matter 11(45):8717–8740

    Article  CAS  Google Scholar 

  30. Bhandaru Nandini, Das Anuja, Salunke Namrata, Mukherjee Rabibrata (2014) Ordered alternating binary polymer nanodroplet array by sequential spin dewetting. Nano Lett 14(12):7009–7016

    Article  CAS  Google Scholar 

  31. Dhara P, Bhandaru N, Das A, Mukherjee R (2018) Transition from Spin Dewetting to continuous film in spin coating of Liquid Crystal 5CB. Sci Rep 8:7169

    Article  Google Scholar 

  32. Tripathi AK, Pierre-Louis O (2020) Disjoining-pressure-induced acceleration of mass shedding in solid-state dewetting. Phys Rev E 101(4):042802

    Article  CAS  Google Scholar 

  33. Leroy F, Saito Y, Cheynis F, Bussmann E, Pierre-Louis O, Müller P (2014) Nonequilibrium diffusion of reactive solid islands. Phys Rev B 89:235406

    Article  Google Scholar 

  34. Leroy F, Saito Y, Curiotto S, Cheynis F, Pierre-Louis O, Müller P (2015) Shape transition in nano-pits after solid-phase etching of SiO\(_2\) by Si islands. Appl Phys Lett 106(19):191601

    Article  Google Scholar 

  35. Bussmann E, Cheynis F, Leroy F, Müller P (2010) Thermal instability of silicon-on-insulator thin films measured by low-energy electron microscopy. IOP Conf Ser Mater Sci Eng 12:012016

    Article  Google Scholar 

  36. Leroy F, Cheynis F, Passanante T, Müller P (2012) Dynamics, anisotropy, and stability of silicon-on-insulator dewetting fronts. Phys Rev B 85:195414

    Article  Google Scholar 

  37. Danielson DT, Sparacin DK, Michel J, Kimerling LC (2006) Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration. J Appl Phys 100(8):83507

    Article  Google Scholar 

  38. Dornel E, Barbé J-C, de Crécy F, Lacolle G, Eymery J (2006) Surface diffusion dewetting of thin solid films: Numerical method and application to Si/SiO\(_2\). Phys Rev B 73:115427

    Article  Google Scholar 

  39. Sudoh K, Naito M (2010) Interfacial reaction of Si islands on SiO\(_2\) during high-temperature annealing. J Appl Phys 108:083520

    Article  Google Scholar 

  40. Curiotto S, Leroy F, Cheynis F, Müller P (2014) Oxygen-induced inhibition of silicon-on-insulator dewetting. Appl Phys Lett 104(6):061603

    Article  Google Scholar 

  41. Alphei LD, Grotjahn R, Becker V, Janhsen R, Douvidzon M, Becker JA (2013) Reaction enhanced wetting of quartz by silicon droplets and its instabilities. J Mater Sci 48(21):7350–7359. https://doi.org/10.1007/s10853-013-7587-z

    Article  CAS  Google Scholar 

  42. Borowik L, Barbé J-C, Bussmann E, Cheynis F, Leroy F, Mariolle D, Müller P (2012) Method for making semi-conductor nanocrystals, Nov. 8, 2012. Publication Number: US2012282758

  43. Borowik L, Barbé J-C, Bussmann E, Cheynis F, Leroy F, Mariolle D, Müller P (2012) Method for making semi-conductor nanocrystals oriented along a predefined direction, Nov. 8, 2012. Publication Number: US2012282759

Download references

Acknowledgements

This work has been supported by the ANR Grants LOTUS (ANR-13-BS04-0004-02) and HOLOLEEM (ANR-15-CE09-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Leroy.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 8470 KB)

Supplementary material 2 (avi 19918 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroy, F., Landru, D., Cheynis, F. et al. Kinetics and coupled dynamics of dewetting and chemical reaction in Si/\(\hbox {SiO}_2\)/Si system. J Mater Sci 55, 16074–16082 (2020). https://doi.org/10.1007/s10853-020-05161-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05161-w

Navigation