Skip to main content
Log in

Novel three-dimensional TiO2-Fe3O4@polypyrrole composites with tunable microwave absorption in the 2–40 GHz frequency range

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Enormous research effort is currently being directed toward the development of low-cost electromagnetic wave absorbing (EMWA) materials that operate at microwave frequencies. Herein, we report the successful fabrication of novel three-dimensional TiO2-Fe3O4@Polypyrrole (T-F-P) composites with excellent microwave absorption properties between 2 and 40 GHz. By varying the thickness of the T-F-P absorber from 1.5 to 2.5 mm, an effective absorption bandwidth (EAB, reflection loss (RL) ≤ − 10 dB) of 28.12 GHz (11.88–40 GHz) was realized. At a thickness of 2.5 mm, the minimum reflection loss (RLmin) was − 37.49 dB (13.84 GHz) in the frequency range 2–18 GHz; − 41.30 dB (25.30 GHz) in the frequency range 18–26.5 GHz and − 42.65 dB (34.1 GHz) in the frequency range 26.5–40 GHz. Multiple reflections, interfacial polarization, conductive losses and magnetic losses all contribute to the excellent EMWA properties of the T-F-P composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Zhang Y, Huang Y, Zhang TF et al (2015) Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 27(12):2049–2053

    CAS  Google Scholar 

  2. Luo JH, Yue L, Ji HG et al (2019) Investigation on the optimization, design and microwave absorption properties of BaTb0.2Eu0.2Fe11.6O19/PANI decorated on reduced graphene oxide nanocomposites. J Mater Sci 54:6332–6346. https://doi.org/10.1007/s10853-018-03305-7

    Article  CAS  Google Scholar 

  3. Luo JH, Zhang K, Cheng ML et al (2020) MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem Eng 380:122625

    CAS  Google Scholar 

  4. Wang GS, Nie LZ, Yu SH et al (2012) Tunable wave absorption properties of β-MnO2 nanorods and their application in dielectric composites. RSC Adv. 2(15):6216–6221

    CAS  Google Scholar 

  5. Cao MS, Shi XL, Fang XY et al (2007) Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl Phys Lett 115(25):203111–203113

    Google Scholar 

  6. Lv HL, Liang XH, Cheng Y et al (2015) Coin-like alpha-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance. ACS Appl Mater Interfaces 7(8):4744–4750

    CAS  Google Scholar 

  7. Han M, Yin X, Li X et al (2017) Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl Mater Interfaces 9(23):20038–20045

    CAS  Google Scholar 

  8. Li Y, Sun NN, Liu J et al (2018) Multifunctional BiFeO3 composites: absorption attenuation dominated effective electromagnetic interference shielding and electromagnetic absorption induced by multiple dielectric and magnetic relaxations. Compos Sci Technol 159(2):240–250

    CAS  Google Scholar 

  9. Huang ZY, Chen HH, Xu ST et al (2018) Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv. Optical Mater. 6(23):1801165–1801174

    Google Scholar 

  10. Yim YJ, Rhee KY, Park SJ et al (2016) Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites. Compos B 98:120–125

    CAS  Google Scholar 

  11. Sun H, Che RC, You X et al (2010) Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater 26(48):8120–8125

    Google Scholar 

  12. Cao MS, Song WL, Hou ZL et al (2010) The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3):788–796

    CAS  Google Scholar 

  13. Han MK, Yin XW, Kong L et al (2014) Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J Mater Chem A 2(39):16403–16409

    CAS  Google Scholar 

  14. Zhao B, Fan BB, Shao G et al (2015) Facile synthesis of novel heterostructure based on SnO2 nanorods grown on Ni walnut with tunable electromagnetic wave absorption Capabilities. ACS Appl Mater Interfaces 7(33):18815–18823

    CAS  Google Scholar 

  15. Dhawan SK, Singh N, Rodrigues D et al (2003) Electromagnetic shielding behaviour of conducting polyaniline composites. Sci Technol Adv Mater 4(2):105–113

    CAS  Google Scholar 

  16. Cerqueira DA, Valente AJ, Filho GR, Burrows HD et al (2009) Synthesis and properties of polyaniline-cellulose acetate blends: the use of sugarcane bagasse waste and the effect of the substitution degree. Carbohydr Polym 78(3):402–408

    CAS  Google Scholar 

  17. Li CP, Ji SN, Jiang XH et al (2018) Microwave absorption by watermelon-like microspheres composed of γ-Fe2O3, microporous silica and polypyrrole. J Mater Sci 53:9635–9649. https://doi.org/10.1007/s10853-018-2262-z

    Article  CAS  Google Scholar 

  18. Song CQ, Yin XW, Han MK et al (2017) Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116:50–58

    CAS  Google Scholar 

  19. Huang ZY, Chen HH, Huang Y et al (2017) Ultrabroadband wide-angle terahertz absorption properties of 3D graphene foam. Adv Funct Mater 28(2):1704363–1704370

    Google Scholar 

  20. Huang ZY, Yuan X, Wang C et al (2018) Flexible thin broadband microwave absorber based on a pyramidal periodic structure of lossy composite. Opt Lett 43(12):2764–2767

    CAS  Google Scholar 

  21. He KQ, Yu LM, Sheng LM et al (2010) Doping effect of single-wall carbon nanotubes on the microwave absorption properties of nanocrystalline barium ferrite. Jpn J Appl Phys 49:125101–125104

    Google Scholar 

  22. Liu CY, Xu YJ, Wu LN et al (2015) Fabrication of core-multishell Mwcnt/Fe3O4/PANI/Au hybrid nanotubes with high-performance electromagnetic absorption. J Mater Chem A 3(19):10566–10572

    CAS  Google Scholar 

  23. Wang L, Xing HL, Gao ST et al (2017) Porous flower-like NiO@graphene composites with superior microwave absorption properties. J Mater Chem C 5(8):2005–2014

    Google Scholar 

  24. Park KY, Han JH, Lee SB et al (2009) Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanobelts and nife particles. Compos Sci Technol 69(7–8):1271–1278

    CAS  Google Scholar 

  25. Kumar A, Alegaonkar PS et al (2015) Impressive transmission mode electromagnetic interference shielding parameters of graphene like nanocarbon/polyurethane nanocomposites for short range tracking countermeasures. ACS Appl Mater Interfaces 7(27):14833–14842

    CAS  Google Scholar 

  26. Qing YC, Zhou WC, Luo F et al (2010) Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon 48(14):4074–4080

    CAS  Google Scholar 

  27. Wen FS, Zhang F, Liu ZY et al (2011) Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J Phys Chem C 115(29):14025–14030

    CAS  Google Scholar 

  28. Sun DP, Zou Q, Wang YP et al (2014) Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6(12):6557–6562

    CAS  Google Scholar 

  29. Du YC, Liu WW, Qiang R et al (2014) Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces 6(15):12997–13006

    CAS  Google Scholar 

  30. Liu JW, Cheng J, Che RC et al (2013) Double shelled yolk-shell micro-spheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J Phys Chem C 117(1):489–495

    CAS  Google Scholar 

  31. Li Q, Liu JW, Zhao YH et al (2018) “Matryoshka doll”-like CeO2 micro-spheres with hierarchical structure to achieve significantly enhanced microwave absorption performance. ACS Appl Mater Interfaces 10(32):27540–27547

    CAS  Google Scholar 

  32. Xu W, Pan YF, Wei W et al (2018) Microwave absorption enhancement and dual-nonlinear magnetic resonance of ultra small nickel with quasi-one-dimensional nanostructure. Appl Surf Sci 428:54–60

    CAS  Google Scholar 

  33. Lv H, Ji G, Liang X et al (2015) Novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J Mater Chem C 3(19):5056–5064

    CAS  Google Scholar 

  34. Lv J, Liang XH, Ji GB et al (2018) Structural and carbonized design of 1D FeNi/C nanobelts with conductive network to optimize electromagnetic parameters and absorption abilities. ACS Sustain Chem Eng 6(6):7239–7249

    CAS  Google Scholar 

  35. Liu JW, Xu JJ, Che CC et al (2013) Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem Eur J 19(2013):6746–6752

    CAS  Google Scholar 

  36. Zhang XM, Ji GB, Liu W et al (2016) A novel Co/TiO2 nanocomposite derived from a metal–organic framework: synthesis and efficient microwave absorption. J Mater Chem 4(9):1860–1870

    CAS  Google Scholar 

  37. Chen XF, Huang Y, Zhang KC et al (2018) Porous TiO2 nanobelts coated with mixed transition-metal oxides Sn3O4 nanosheets core-shell composites as high-performance anode materials of lithium ion batteries. Electrochim Acta 259:131–142

    CAS  Google Scholar 

  38. Liu YL, Li CM, Zhang HT et al (2015) One-pot hydrothermal synthesis of highly monodisperse water-dispersible hollow magnetic microspheres and construction of photonic crystals. Chem Eng J 259:779–786

    CAS  Google Scholar 

  39. Vishnuvardhan TK, Kulkarni VR, Basavaraja C et al (2006) Synthesis, characterization and a.c. conductivity of polypyrrole/Y2 O3 composites. Bull Mater Sci 29(1):77–83

    CAS  Google Scholar 

  40. Kopecká J, Mrlík M, Olejník R et al (2016) Polypyrrole nanotubes and their carbonized analogs: synthesis, characterization, gas sensing properties. Sensors 16(11):1917

    Google Scholar 

  41. Zhao B, Zhao WY, Shao G et al (2015) Morphology control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Interfaces 7(23):12951–12960

    CAS  Google Scholar 

  42. Xu JJ, Liu JW, Che RC et al (2014) Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 6(11):5782–5790

    CAS  Google Scholar 

  43. Shukla V (2020) Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/c/ppy core/shell composites. J Mater Sci 55(7):2826–2835. https://doi.org/10.1007/s10853-019-04198-w

    Article  CAS  Google Scholar 

  44. Li Cuiping et al (2018) Microwave absorption properties of γ-Fe2O3/(SiO2)x–SO3H/polypyrrole core/shell/shell microspheres. J Mater Sci 53:5270–5286. https://doi.org/10.1007/s10853-017-1949-x

    Article  CAS  Google Scholar 

  45. Shukla V (2019) Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv 1(5):1640–1671

    Google Scholar 

  46. Sun X et al (2018) Fe3O4@SiO2 nanoparticles wrapped with polypyrrole (PPy) aerogel: A highly performance material as excellent electromagnetic absorber. Mater Lett 221:93–96

    CAS  Google Scholar 

  47. Zu CL et al (2010) Fe3O4/TiO2 Core/Shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114:16229–16235

    Google Scholar 

  48. Wang X, Liu QC, Wu SY et al (2019) Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv Mater 31(19):1807716–1807725

    Google Scholar 

  49. Adohi BJ, Laur V, Haidar B et al (2014) Measurement of the microwave effective permittivity in tensile-strained polyvinylidene difluoride trifluoroethylene filled with graphene. Appl Phys Lett 104(8):082902–082906

    Google Scholar 

  50. Liu PB, Huang Y, Yan J et al (2016) Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J Mater Chem C 4(26):6362–6370

    CAS  Google Scholar 

  51. Zhu JH, Wei SY, Haldolaarachchige N et al (2011) Electromagnetic field shielding polyurethane nanocomposites reinforced with Core-Shell Fe-Silica nanoparticles. J Phys Chem C 115(31):15304–15310

    CAS  Google Scholar 

  52. Zhu CL, Zhang ML, Qiao YJ et al (2010) Fe3O4/TiO2 Core/Shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114(39):16229–16235

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 41476059), NSFC-Shandong Joint Fund (U1706225), AoShan Talents Cultivation Program supported by Qingdao National Laboratory for Marine Science, National Key Research and Development Project (2019YFC0312102) and Technology (2017ASTCP-OS02), the Natural Science Foundation of Hebei Province (No. E2018108011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Zhang or Liangmin Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Li, C., Jiang, X. et al. Novel three-dimensional TiO2-Fe3O4@polypyrrole composites with tunable microwave absorption in the 2–40 GHz frequency range. J Mater Sci 55, 15493–15509 (2020). https://doi.org/10.1007/s10853-020-05114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05114-3

Navigation