Skip to main content
Log in

A sandwich-type electrochemical immunosensor for ultrasensitive detection of CEA based on core–shell Cu2O@Cu-MOF@Au NPs nanostructure attached with HRP for triple signal amplification

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel sandwich-type electrochemical immunosensor based on cuprous oxide (Cu2O)@copper-metal organic framework (Cu-MOF)@gold nanoparticles (Au NPs) core–shell structure was proposed. Cu2O@Cu-MOF@Au attached with horseradish peroxidase (HRP) triple-catalyzed hydrogen peroxide (H2O2) for detecting CEA antigen. In this work, 50 nm Cu2O nanospheres were prepared. Using Cu2O nanospheres as the core, Cu-MOF was coated on the surface of Cu2O nanospheres by reaction of Cu2O and ligands. Subsequently, chloroauric acid was reduced to Au NPs without adding any reducing agent and Au NPs dispersed on the surface of Cu-MOF. Finally, the Cu2O@Cu-MOF@Au-HRP-Ab2 nanoprobe was successfully prepared. Immunosensors had good performance due to the following reasons. Firstly, Cu2O, Cu-MOF and HRP have excellent catalytic properties for hydrogen peroxide. In addition, the synergistic effect of Cu2O, Cu-MOF and HRP promoted the reduction of hydrogen peroxide and tripled amplification of electrical signals. Here, the successfully prepared immunosensor detected carcinoembryonic antigen (CEA) sensitively, the detection range was 50 fg/mL–80 ng/mL, and the detection limit was 17 fg/mL. Besides, the proposed immunosensor had good stability, selectivity and specificity. Detection in human serum samples had good results without matrix effect. This provided a new idea for the clinical detection of tumor markers: "metal oxide—metal organic framework—precious metal nanoparticles" (MMP).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhong Z, Wu W, Wang D, Wang D, Shan J, Yi Q, Zhang ZJB (2010) Biosens Bioelectron 2010(25):2379–2383

    Google Scholar 

  2. Gao Z, Li Y, Zhang X, Feng J, Kong L, Wang P, Chen Z, Dong Y, Wei QJB (2018) Biosens Bioelectron 102:189–195

    CAS  Google Scholar 

  3. Lv H, Li Y, Zhang X, Gao Z, Zhang C, Zhang S, Dong YJB (2018) Biosen Bioelectron 2018(102):1–7

    Google Scholar 

  4. Miao J, Wang X, Lu L, Zhu P, Mao C, Zhao H, Song Y, Shen JJB (2014) Biosens Bioelectron 58:9–16

    CAS  Google Scholar 

  5. Li L, Pan Y, Tao Y, Chen D, Wang Y, Wang X, Liu Z, Peng D, Yuan ZJFAM (2019) Biosens Bioelectron 12:1479–1486

    Google Scholar 

  6. Tsai HY, Chang CY, Li YC, Chu WC, Viswanathan K, Fuh CBJJONR (2011) Biosens Bioelectron 13:2461–2467

    CAS  Google Scholar 

  7. Han Q, Wang R, Xing B, Zhang T, Khan MS, Wu D, Wei QJB (2017) Biosens Bioelectron 99:493

    Google Scholar 

  8. Shu J, Tang DP (2020) Analyt Chem 92:363–377

    CAS  Google Scholar 

  9. Luo ZB, Qi QG, Zhang LJ, Zeng RJ, Su LS, Tang DP (2019) Analyt Chem 91:4149–4156

    CAS  Google Scholar 

  10. Zhang B, Liu BQ, Tang DP, Niessner R, Chen GN, Knopp D (2012) Analyt Chem 84:5392–5399

    CAS  Google Scholar 

  11. Chen Y, Wang AJ, Yuan PX, Luo XL, Xue YD, Feng JJ (2019) Biosens Bioelectron 132:294–301

    CAS  Google Scholar 

  12. Yang Y, Yan Q, Liu Q, Li Y, Liu H, Wang P, Chen L, Zhang D, Li Y, Dong YJB (2017) Biosens Bioelectron 99:450–457

    Google Scholar 

  13. Wang R, Feng JJ, Xue YD, Wu L, Wang AJ (2018) Sens. Actuator B Chem 2018(254):1174–1181

    Google Scholar 

  14. Li Y, Zhang Y, Li F, Feng J, Li M, Chen L, Dong YJB (2017) Biosens Bioelectron 92:33

    CAS  Google Scholar 

  15. Krithiga N, Viswanath KB, Vasantha VS, Jayachitra AJB (2016) Biosens Bioelectron 79:121–129

    CAS  Google Scholar 

  16. Guo J, Wang J, Zhang J, Zhang W, Zhang YJB (2017) Biosens Bioelectron 90:159–165

    CAS  Google Scholar 

  17. Wang Y, Fan D, Dan W, Yong Z, Ma H, Du B, Qin WJS (2016) Sens. Actuator B Chem 2016(236):241–248

    Google Scholar 

  18. Kahsay AW, Ibrahim KB, Tsai MC, Birhanu MK, Chala SA, Su WN, Hwang BJJCL (2019) Biosens Bioelectron 149:860–869

    CAS  Google Scholar 

  19. Deng X, Zhang Q, Zhao Q, Ma L, Ding M, Xu XJNRL (2015) Biosens Bioelectron 10:8

    Google Scholar 

  20. Qiu JD, Liang RP, Wang R, Fan LX, Chen YW, Xia XH (2009) Biosens Bioelectron 25:852–857

    CAS  Google Scholar 

  21. Qi T, Liao J, Li Y, Peng J, Li W, Chu B, Li H, Wei Y, Qian Z (2014) Biosens Bioelectron 61:245–250

    CAS  Google Scholar 

  22. Han J, Zhang M, Chen G, Zhang Y, Wei Q, Zhuo Y, Xie G, Yuan R, Chen S (2017) J Mater Chem B 5:1037–1039

    Google Scholar 

  23. Altintas C, Avci G, Daglar H, Azar ANV, Velioglu S, Erucar I, Keskin S (2018) ACS Appl Mater Interfaces 10:17257–17268

    CAS  Google Scholar 

  24. Lv SZ, Zhang KY, Zhu L, Tang DP (2020) Analyt Chem 92:1470–1476

    CAS  Google Scholar 

  25. Lv SZ, Zhang KY, Zhu L, Tang DP, Niessner R, Knopp D (2019) Analyt Chem 91:12055–12062

    CAS  Google Scholar 

  26. Lv SZ, Tang Y, Zhang KY, Tang DP (2018) Analyt Chem 90:14121–14125

    CAS  Google Scholar 

  27. Zubair H, Sung Hwa J (2015) J Hazard Mater 283:329–339

    Google Scholar 

  28. Luz I, Llabrés i Xamena FX, Corma A (2012) J Catal 285(1):285–291. https://doi.org/10.1016/j.jcat.2011.10.001

    Article  CAS  Google Scholar 

  29. Cho SH, Shim J, Yun SH, Moon SH (2008) Appl Catal A Gen 337:66–72

    CAS  Google Scholar 

  30. De Olmos J, Hardy H, Heimer L (1978) J Comp Neurol 181:213–244

    Google Scholar 

  31. Zhan G, Fan L, Zhou S, Yang X (2018) ACS Applied Mater Interfaces 10:35234–35243

    CAS  Google Scholar 

  32. Zhang C, Zhang S, Jia Y, Li Y, Wang P, Liu Q, Xu Z, Li X, Dong Y (2019) Biosens Bioelectron 126:785–791

    CAS  Google Scholar 

  33. Zhou X, Yang L, Tan X, Zhao G, Xie X, Du G (2018) Biosens Bioelectron 112:956–963

    Google Scholar 

  34. Dai L, Li Y, Wang Y, Luo X, Wei D, Feng R, Yan T, Ren X, Du B, Wei Q (2019) Biosens Bioelectron 132:97–104

    CAS  Google Scholar 

  35. Zhang S, Zhang C, Jia Y, Zhang X, Dong Y, Li X, Liu Q, Li Y, Zhao Z (2019) Bioelectrochemistry 128:140–147

    CAS  Google Scholar 

  36. Rizwan M, Elma S, Lim SA, Ahmed MU (2018) Biosens Bioelectron 107:211

    CAS  Google Scholar 

  37. Yan Q, Cao L, Dong H, Tan Z, Hu Y, Liu Q, Liu H, Zhao P, Chen L, Liu Y, Li Y, Dong Y (2019) Biosens Bioelectron 127:174–180

    CAS  Google Scholar 

  38. Yan Q, Cao L, Dong H, Tan Z, Liu Q, Zhang W, Zhao P, Li Y, Liu Y, Dong Y (2019) Anal Chimica Acta 1069:117–125

    CAS  Google Scholar 

  39. Zheng X, Mo G, He Y, Qin D, Jiang X, Mo W, Deng B (2019) J Electroanal Chem 844:132–141

    CAS  Google Scholar 

  40. Nagashima K, Yamazaki M, Sugiya H, Sawada M, Furuyama S (1992) Int J Biochem 24:795

    CAS  Google Scholar 

  41. Huang K, Li C, Deng J, Xiong J (2012) J Nanomater 2012:11

    Google Scholar 

  42. Chen P, Wang T, Zheng X, Tian D, Xia F, Zhou C (2018) N J Chem. https://doi.org/10.1039/C8NJ00059J

    Article  Google Scholar 

  43. Wang Y, Zhao G, Yong Z, Pang X, Wei C, Du B, Qin W (2018) Sens Actuators B Chem 266:561–569

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21065009), the Scientific Research Foundation for Changjiang Scholars of Shihezi University (CJXZ201501), Shihezi University's double-level key projects (SHYL-ZD201802), Shihezi University double-class general project (SHYL-YB201806).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenglin Hong or Xiuwen Qiao.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yang, Y., Ma, C. et al. A sandwich-type electrochemical immunosensor for ultrasensitive detection of CEA based on core–shell Cu2O@Cu-MOF@Au NPs nanostructure attached with HRP for triple signal amplification. J Mater Sci 55, 13980–13994 (2020). https://doi.org/10.1007/s10853-020-04904-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04904-z

Navigation