Skip to main content
Log in

Direct nanoscale mapping of open circuit voltages at local back surface fields for PERC solar cells

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The open circuit voltage (VOC) is a critical and common indicator of solar cell performance as well as degradation, for panel down to lab-scale photovoltaics. Detecting VOC at the nanoscale is much more challenging, however, due to experimental limitations on spatial resolution, voltage resolution, and/or measurement times. Accordingly, an approach based on Conductive Atomic Force Microscopy is implemented to directly detect the local VOC, notably for monocrystalline Passivated Emitter Rear Contact (PERC) cells which are the most common industrial-scale solar panel technology in production worldwide. This is demonstrated with cross-sectioned monocrystalline PERC cells around the entire circumference of a poly-aluminum-silicide via through the rear emitter. The VOC maps reveal a local back surface field extending ~ 2 μm into the underlying p-type Si absorber due to Al in-diffusion as designed. Such high spatial resolution methods for photovoltaic performance mapping are especially promising for directly visualizing the effects of processing parameters, as well as identifying signatures of degradation for silicon and other solar cell technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Daliento S, Chouder A, Guerriero P et al (2017) Int J Photoenergy 2017:13. https://doi.org/10.1155/2017/1356851

    Article  Google Scholar 

  2. Sinton RA, Cuevas A (1996) Appl Phys Lett 69:2510. https://doi.org/10.1063/1.117723

    Article  CAS  Google Scholar 

  3. Trupke T, Bardos RA, Abbott M, Cotter J (2005) Appl Phys Lett. https://doi.org/10.1063/1.2034109

    Article  Google Scholar 

  4. Huey BD, Luria J, Bonnell DA (2019) In: Hawkes PW, Spence JCH (eds) Springer handbook of microscopy. Springer International Publishing, Cambridge

    Google Scholar 

  5. Tennyson EM, Garrett JL, Frantz JA et al (2015) Adv Energy Mater 5:1501142. https://doi.org/10.1002/aenm.201501142

    Article  CAS  Google Scholar 

  6. Glatzel T, Marrón DF, Schedel-Niedrig T, Sadewasser S, Lux-Steiner MC (2002) Appl Phys Lett 81:2017. https://doi.org/10.1063/1.1506205

    Article  CAS  Google Scholar 

  7. Kutes Y, Aguirre BA, Bosse JL, Cruz-Campa JL, Zubia D, Huey BD (2016) Prog Photovoltaics Res Appl 24:315. https://doi.org/10.1002/pip.2698

    Article  CAS  Google Scholar 

  8. Dullweber T, Schmidt J (2016) IEEE J Photovoltaics 6:1366. https://doi.org/10.1109/JPHOTOV.2016.2571627

    Article  Google Scholar 

  9. Zastrow U, Houben L, Meertens D, Grohe A, Brammer T, Schneiderlöchner E (2006) Appl Surf Sci 252:7082. https://doi.org/10.1016/j.apsusc.2006.02.114

    Article  CAS  Google Scholar 

  10. Padmanabhan M, Jhaveri K, Sharma R et al (2016) Physica Status Solidi (RRL) Rapid Res Lett 10:874. https://doi.org/10.1002/pssr.201600173

    Article  CAS  Google Scholar 

  11. JL Braid, TD Wager, A Longacre, BD Huey, RH French (2018) In: 2018 IEEE 7th world conference on photovoltaic energy conversion (WCPEC)IEEE, Hawaii

  12. Luka T, Großer S, Hagendorf C, Ramspeck K, Turek M (2016) Sol Energy Mater Sol Cells 158:43. https://doi.org/10.1016/j.solmat.2016.05.061

    Article  CAS  Google Scholar 

  13. deOliveira MCC, Cardoso ASAD, Viana MM, Lins VDFC (2018) Renew Sustain Energy Rev 81:2299. https://doi.org/10.1016/j.rser.2017.06.039

    Article  CAS  Google Scholar 

  14. Zhu J, Koehl M, Hoffmann S et al (2016) Prog Photovoltaics Res Appl 24:1346. https://doi.org/10.1002/pip.2793

    Article  Google Scholar 

  15. Peike C, Hoffmann S, Hülsmann P et al (2013) Sol Energy Mater Sol Cells 116:49. https://doi.org/10.1016/j.solmat.2013.03.022

    Article  CAS  Google Scholar 

  16. Kraft A, Labusch L, Ensslen T et al (2015) IEEE J Photovoltaics 5:736. https://doi.org/10.1109/JPHOTOV.2015.2395146

    Article  Google Scholar 

  17. Matsuda K, Watanabe T, Sakaguchi K, Yoshikawa M, Doi T, Masuda A (2012) Jpn J Appl Phys 51:10NF07. https://doi.org/10.1143/jjap.51.10nf07

    Article  Google Scholar 

  18. Illya G, Handara V, Yujing L, Shivakumar R, Budiman AS (2016) Procedia Eng 139:7. https://doi.org/10.1016/j.proeng.2015.09.233

    Article  CAS  Google Scholar 

  19. Nakayashiki K, Hofstetter J, Morishige AE et al (2016) IEEE J Photovoltaics 6:860. https://doi.org/10.1109/JPHOTOV.2016.2556981

    Article  Google Scholar 

  20. Y Xu (2018) SNEC 12, In: International energy storage and mobile new energy exhibition & conference SNEC, Shanghai, China

  21. Shetty KD, Boreland MB, Shanmugam V et al (2013) Energy Procedia 33:70. https://doi.org/10.1016/j.egypro.2013.05.041

    Article  CAS  Google Scholar 

  22. Atamanuk K, Luria J, Huey BD (2018) Beilstein J Nanotechnol 9:1802. https://doi.org/10.3762/bjnano.9.171

    Article  CAS  Google Scholar 

  23. Kutes Y, Zhou Y, Bosse JL, Steffes J, Padture NP, Huey BD (2016) Nano Lett 16:3434. https://doi.org/10.1021/acs.nanolett.5b04157

    Article  CAS  Google Scholar 

  24. Dressler K, Rauer M, Kaloudis M, Dauwe S, Herguth A, Hahn G (2015) IEEE J Photovoltaics 5:70. https://doi.org/10.1109/JPHOTOV.2014.2359745

    Article  Google Scholar 

  25. Huey BD, Bonnell DA (2000) Solid State Ionics 131:51. https://doi.org/10.1016/S0167-2738(00)00621-4

    Article  CAS  Google Scholar 

  26. Tennyson EM, Doherty TAS, Stranks SD (2019) Nat Rev Mater 4:573. https://doi.org/10.1038/s41578-019-0125-0

    Article  CAS  Google Scholar 

  27. French RH, Murray MP, Lin W, et al. (2011) In: IEEE 2011 Energy Tech IEEE, Cleveland, OH

  28. Ahn N, Kwak K, Jang MS et al (2016) Nat Commun 7:13422. https://doi.org/10.1038/ncomms13422

    Article  CAS  Google Scholar 

  29. Badiee A, Ashcroft IA, Wildman RD (2016) Int J Adhes Adhes 68:212. https://doi.org/10.1016/j.ijadhadh.2016.03.008

    Article  CAS  Google Scholar 

  30. Pern FJ, Czanderna AW (1992) Sol Energy Mater Sol Cells 25:3. https://doi.org/10.1016/0927-0248(92)90013-F

    Article  CAS  Google Scholar 

  31. Luria J, Kutes Y, Moore A, Zhang L, Stach EA, Huey BD (2016) Nat Energy 1:16150. https://doi.org/10.1038/nenergy.2016.150

    Article  CAS  Google Scholar 

  32. Leite MS, Abashin M, Lezec HJ, Gianfrancesco A, Talin AA, Zhitenev NB (2014) ACS Nano 8:11883. https://doi.org/10.1021/nn5052585

    Article  CAS  Google Scholar 

  33. Sadewasser S, Abou-Ras D, Azulay D et al (2011) Thin Solid Films 519:7341. https://doi.org/10.1016/j.tsf.2010.12.227

    Article  CAS  Google Scholar 

  34. Visoly-Fisher I, Cohen SR, Gartsman K, Ruzin A, Cahen D (2006) Adv Func Mater 16:649. https://doi.org/10.1002/adfm.200500396

    Article  CAS  Google Scholar 

  35. Li JB, Chawla V, Clemens BM (2012) Adv Mater 24:720. https://doi.org/10.1002/adma.201103470

    Article  CAS  Google Scholar 

  36. Galloway SA, Edwards PR, Durose K (1999) Sol Energy Mater Sol Cells 57:61. https://doi.org/10.1016/S0927-0248(98)00168-8

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number DE-EE-0008172. The DuPont Silicon Valley Technology Center is recognized for fabricating the investigated monocrystalline PERC cells, including Shannon Dugan and Joe Scardera for details on the cell processing and providing Fig. 4c.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan D. Huey.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest related to the work published herein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longacre, A., Martin, M., Moran, T. et al. Direct nanoscale mapping of open circuit voltages at local back surface fields for PERC solar cells. J Mater Sci 55, 11501–11511 (2020). https://doi.org/10.1007/s10853-020-04736-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04736-x

Navigation