Skip to main content
Log in

Engineering solar cells based on correlative X-ray microscopy

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In situ and operando measurement techniques combined with nanoscale resolution have proven invaluable in multiple fields of study. We argue that evaluating device performance as well as material behavior by correlative X-ray microscopy with <100 nm resolution can radically change the approach for optimizing absorbers, interfaces and full devices in solar cell research. In this article, we thoroughly discuss the measurement technique of X-ray beam induced current and point out fundamental differences between measurements of wafer-based silicon and thin-film solar cells. Based on reports of the last years, we showcase the potential that X-ray microscopy measurements have in combination with in situ and operando approaches throughout the solar cell lifecycle: from the growth of individual layers to the performance under operating conditions and degradation mechanisms. Enabled by new developments in synchrotron beamlines, the combination of high spatial resolution with high brilliance and a safe working distance allows for the insertion of measurement equipment that can pave the way for a new class of experiments. Applied to photovoltaics research, we highlight today’s opportunities and challenges in the field of nanoscale X-ray microscopy, and give an outlook on future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16

Similar content being viewed by others

Notes

  1. Although multiple exciton generation (MEG) by single photons has been demonstrated e.g., in Ref. 161 for quantum-dot solar cells, solar cells with internal quantum efficiencies above 1 are of no practical relevance so far beyond fundamental research.

  2. Although experimentally not confirmed, there may be cases, where layers adjacent to the absorber layer could contribute to the X-ray beam induced photocurrent as discussed in Ref. 65.

  3. One can think of a device and measurement architecture, where more electrons leave the back surface than the front surface, e.g., with a front that is transparent for X-rays but absorbs heavily electrons, and a back that absorbs X-rays efficiently. However, we have in practice never encountered such a case, in which the grounding scheme would need to be inverted.

  4. “Front” and “back” side of a device denotes here the side exposed to or turned away from the incident X-rays. Obviously, this does not have to be the side of a solar cell that is exposed to the sun. As demonstrated in Fig. 2, for standard operation, the sun light enters this type of perovskite solar cell through the glass, but its high absorption of X-rays forced us to shine the X-rays through the other side.

  5. In most cases, the fraction of photons transmitted through the solar cell is not directly measurable by a down-stream detector, as most of them will be absorbed in the cell substrate.

  6. We used the attenuation coefficients included in the Penelope package for Beer–Lambert’s law and Monte–Carlo simulations, which justifies a direct comparison. Note that different databases for element-specific X-ray coefficients are available. A relatively recent database is presented in Ref. 162, and online80,163 as well as offline sources68,86 are available.

  7. Another common tool for fitting XRF data is PyMCA, described in Ref. 164 and available from Ref. 165.

  8. All absorption length values reported in this section were calculated using the functions “material.f” and “tables.f”, both being part of the Monte-Carlo simulation software package Penelope.68 For broader discussion of absorption length of different solar cell absorber layers, we refer to our publication in prep.69

  9. Note that the discrete layers do not need to correspond to physically distinct layers. In most cases, we use max. 1 nm thick layers for the calculation of the correction, which allows to take into account depth-dependent composition gradients as they are standard in many solar cell architectures. Whereas such depth-dependent composition variations are not accessible in plan view XRF measurements, they can be determined by other means (secondary ion mass spectroscopy, glow-discharge optical emission spectroscopy, cross-section XRF, etc.), and be taken into account for the calculation of the correction.

  10. Although I0 represents the intensity of the incoming photon beam as in Beer–Lambert’s law, I does not represent the intensity of the outgoing photon beam in Eq. (9)—in contrast to Eq. (10). Instead, I represents the outgoing photon beam intensity if there was no angular scattering or reemission of photons (fluorescence probability 100%).

  11. For the quantification of raw XRF counts into area concentrations by fitting of the reference and sample spectra, we typically use the MAPS software package developed at APS.79

  12. Poly{[N,N-9-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bithiophene)}.

References

  1. A. Louwen, W.G.J.H.M. van Sark, A.P.C. Faaij, and R.E.I. Schropp: Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat. Commun. 7, 13728 (2016).

    Article  CAS  Google Scholar 

  2. C. Breyer and A. Gerlach: Global overview on grid-parity. Prog. Photovolt. Res. Appl. 21, 121 (2013).

    Article  Google Scholar 

  3. G. Masson and M. Brunisholz: 2015 Snapshot of Global Photovoltaic Markets. Report IEA PVPS T1–T292016 1 (IEEE, 2016).

  4. M.A. Green: Rare materials for photovoltaics: Recent tellurium price fluctuations and availability from copper refining. Sol. Energy Mater. Sol. Cells 119, 256 (2013).

    Article  CAS  Google Scholar 

  5. J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, and V. Bulovic: Pathways for solar photovoltaics. Energy Environ. Sci. 8(4), 1200 (2015).

    Article  CAS  Google Scholar 

  6. W. Shockley and H.J. Queisser: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510 (1961).

    Article  CAS  Google Scholar 

  7. Z. (Jason) Yu, M. Leilaeioun, and Z. Holman: Selecting tandem partners for silicon solar cells. Nat. Energy 1, 16137 (2016).

    Article  Google Scholar 

  8. M.C. Beard, J.M. Luther, and A.J. Nozik: The promise and challenge of nanostructured solar cells. Nat. Nanotechnol. 9(12), 951 (2014).

    Article  CAS  Google Scholar 

  9. X. Sheng, C.A. Bower, S. Bonafede, J.W. Wilson, B. Fisher, M. Meitl, H. Yuen, S. Wang, L. Shen, A.R. Banks, C.J. Corcoran, R.G. Nuzzo, S. Burroughs, and J.A. Rogers: Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nat. Mater. 13(6), 593 (2014).

    Article  CAS  Google Scholar 

  10. M.I. Bertoni, D.P. Fenning, M. Rinio, V. Rose, M. Holt, J. Maser, and T. Buonassisi: Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells. Energy Environ. Sci. 4(10), 4252 (2011).

    Article  CAS  Google Scholar 

  11. T. Buonassisi, A.A. Istratov, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, and E.R. Weber: Engineering metal-impurity nanodefects for low-cost solar cells. Nat. Mater. 4(9), 676 (2005).

    Article  CAS  Google Scholar 

  12. A.E. Morishige, M.A. Jensen, J. Hofstetter, P.X.T. Yen, C. Wang, B. Lai, D.P. Fenning, and T. Buonassisi: Synchrotron-based investigation of transition-metal getterability in n-type multicrystalline silicon. Appl. Phys. Lett. 108, 202104 (2016).

    Article  CAS  Google Scholar 

  13. S. Bernardis, B.K. Newman, M. Di Sabatino, S.C. Fakra, M.I. Bertoni, D.P. Fenning, R.B. Larsen, and T. Buonassisi: Synchrotron-based microprobe investigation of impurities in raw quartz-bearing and carbon-bearing feedstock materials for photovoltaic applications. Prog. Photovolt. Res. Appl. 20(2), 217 (2012).

    Article  CAS  Google Scholar 

  14. M.I. Bertoni, S. Hudelson, B.K. Newman, D.P. Fenning, H.F.W. Dekkers, E. Cornagliotti, A. Zuschlag, G. Micard, G. Hahn, G. Coletti, B. Lai, and T. Buonassisi: Influence of defect type on hydrogen passivation efficacy in multicrystalline silicon solar cells. Prog. Photovolt. Res. Appl. 19(2), 187 (2011).

    Article  CAS  Google Scholar 

  15. T. Buonassisi, M. Heuer, O.F. Vyvenko, A.A. Istratov, E.R. Weber, Z. Cai, B. Lai, T.F. Ciszek, and R. Schindler: Applications of synchrotron radiation X-ray techniques on the analysis of the behavior of transition metals in solar cells and single-crystalline silicon with extended defects. Phys. B 340–342, 1137 (2003).

    Article  CAS  Google Scholar 

  16. T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, G. Hahn, S. Riepe, J. Isenberg, W. Warta, G. Willeke, T.F. Ciszek, and E.R. Weber: Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved X-ray beam-induced current. Appl. Phys. Lett. 87, 044101 (2005).

    Article  CAS  Google Scholar 

  17. O.F. Vyvenko, T. Buonassisi, A.A. Istratov, and E.R. Weber: X-ray beam induced current/microprobe X-ray fluorescence: Synchrotron radiation based X-ray microprobe techniques for analysis of the recombination activity and chemical nature of metal impurities in silicon. J. Phys.: Condens. Matter 16(6), S141 (2004).

    CAS  Google Scholar 

  18. S. Bernardini, S. Johnston, B. West, B. Lai, T. Naerland, M. Stuckelberger, and M.I. Bertoni: Nano-XRF analysis of metal impurities distribution at PL active grain boundaries during mc-silicon solar cell processing. IEEE J. Photovolt. 7(1), 244 (2017).

    Article  Google Scholar 

  19. S. Siebentritt: What limits the efficiency of chalcopyrite solar cells? Sol. Energy Mater. Sol. Cells 95(6), 1471 (2011).

    Article  CAS  Google Scholar 

  20. U. Rau and J.H. Werner: Radiative efficiency limits of solar cells with lateral band-gap fluctuations. Appl. Phys. Lett. 84(19), 3735 (2004).

    Article  CAS  Google Scholar 

  21. L. Gütay, C. Lienau, and G.H. Bauer: Subgrain size inhomogeneities in the luminescence spectra of thin film chalcopyrites. Appl. Phys. Lett. 97(5), 52110 (2010).

    Article  CAS  Google Scholar 

  22. L. Gütay and G.H. Bauer: Non-uniformities of opto-electronic properties in Cu(In,Ga)Se2 thin films and their influence on cell performance with confocal photoluminescence. In 2009 34th IEEE Photovoltaic Specialists Conference (IEEE, Philadelphia, 2009); p. 874.

    Chapter  Google Scholar 

  23. J.S. Yun, A. Ho-Baillie, S. Huang, S.H. Woo, Y. Heo, J. Seidel, F. Huang, Y.B. Cheng, and M.A. Green: Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6(5), 875 (2015).

    Article  CAS  Google Scholar 

  24. D.W. de Quilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon, M.E. Ziffer, H.J. Snaith, and D.S. Ginger: Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348(6235), 683 (2015).

    Article  CAS  Google Scholar 

  25. Y. Luo, S. Gamliel, S. Nijem, S. Aharon, M. Holt, B. Stripe, V. Rose, M.I. Bertoni, L. Etgar, and D.P. Fenning: Heterogeneous chlorine incorporation in organic–inorganic perovskite solar cells. Chem. Mater. 28(18), 6536 (2016).

    Article  CAS  Google Scholar 

  26. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, and A.W.Y. Ho-Baillie: Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25(1), 3 (2017).

    Article  Google Scholar 

  27. E.J. Crumlin, Z. Liu, H. Bluhm, W. Yang, J. Guo, and Z. Hussain: X-ray spectroscopy of energy materials under in situ/operando conditions. J. Electron Spectrosc. Relat. Phenom. 200, 264 (2015).

    Article  CAS  Google Scholar 

  28. D. Abou-Ras: Correlative microscopy analyses of thin-film solar cells at multiple scales. Mater. Sci. Semicond. Process. (2016), in press.

  29. M. Senoner and W.E.S. Unger: SIMS imaging of the nanoworld: Applications in science and technology. J. Anal. At. Spectrom. 27(7), 1050 (2012).

    Article  CAS  Google Scholar 

  30. A. Merkle, L. Lechner, A. Steinbach, J. Gelb, M. Kienle, M. Phaneuf, and N. Chawla: Automated correlative tomography using XRM and FIB-SEM to span length scales and modalities in 3D materials. Microsc. Anal. 28, S10 (2014).

    Google Scholar 

  31. T.L. Burnett, S.A. McDonald, A. Gholinia, R. Geurts, M. Janus, T. Slater, S.J. Haigh, C. Ornek, F. Almuaili, D.L. Engelberg, G.E. Thompson, and P.J. Withers: Correlative tomography. Sci. Rep. 4, 4711 (2014).

    Article  CAS  Google Scholar 

  32. A. Sakdinawat and D. Attwood: Nanoscale X-ray imaging. Nat. Photonics 4(12), 840 (2010).

    Article  CAS  Google Scholar 

  33. H. Hieslmair, A.A. Istratov, R. Sachdeva, and E.R. Weber: New synchrotron-radiation based technique to study localized defects in silicon: “EBIC” with X-ray excitation. In 10th Work. Cryst. Silicon Sol. Cell Mater. Process. (NREL, Copper Mountain, 2000); pp. 162–165.

    Google Scholar 

  34. O.F. Vyvenko, T. Buonassisi, A.A. Istratov, H. Hieslmair, A.C. Thompson, R. Schindler, and E.R. Weber: X-ray beam induced current—A synchrotron radiation based technique for the in situ analysis of recombination properties and chemical nature of metal clusters in silicon. J. Appl. Phys. 91(6), 3614 (2002).

    Article  CAS  Google Scholar 

  35. T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, G. Hahn, S. Riepe, J. Isenberg, W. Warta, G. Willeke, T.F. Ciszek, and E.R. Weber: Synchrotron-based spectrally-resolved X-ray beam induced current: a technique to quantify the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon. In 15th Work. Cryst. Silicon Sol. Cells Modul. Mater. Process. (NREL, Vail, 2005); pp. 141–144.

    Google Scholar 

  36. A.A. Istratov, T. Buonassisi, E.R. Weber, M.A. Marcus, and T.F. Ciszek: Dependence of precipitation behavior of Cu and Ni in CZ multicrystalline silicon on cooling conditions. In 14th Work. Cryst. Silicon Sol. Cells Modul. (NREL, Winter Park, 2004); pp. 1–5.

    Google Scholar 

  37. T. Buonassisi, A.A. Istratov, M.A. Marcus, S. Peters, C. Ballif, M. Heuer, T.F. Ciszek, Z. Cai, B. Lai, R. Schindler, and E.R. Weber: Synchrotron-based investigations into metallic impurity distribution and defect engineering in multicrystalline silicon via thermal treatments. In 2005 30th IEEE Photovoltaic Specialists Conference (IEEE, Lake Buena Vista, 2005); pp. 1027–1030.

    Chapter  Google Scholar 

  38. M. Rinio, C. Ballif, T. Buonassisi, and D. Borchert: Defects in the deteriorated border layer of block-cast multicrystalline silicon ingots. In 19th Eur. Photovolt. Sol. Energy Conf. Exhib. (WIP, Paris, 2004); pp. 762–765.

    Google Scholar 

  39. T. Buonassisi, O.F. Vyvenko, A.A. Istratov, E.R. Weber, G. Hahn, D. Sontag, J.P. Rakotoniaina, O. Breitenstein, J. Isenberg, and R. Schindler: Observation of transition metals at shunt locations in multicrystalline silicon solar cells. J. Appl. Phys. 95(3), 1556 (2004).

    Article  CAS  Google Scholar 

  40. M. Trushin, W. Seifert, O. Vyvenko, J. Bauer, G. Martinez-Criado, M. Salome, and M. Kittler: XBIC/μ-XRF/μ-XAS analysis of metals precipitation in block-cast solar silicon. Nucl. Instrum. Methods Phys. Res., Sect. B 268(3–4), 254 (2010).

    Article  CAS  Google Scholar 

  41. M. Trushin, O. Vyvenko, W. Seifert, M. Kittler, I. Zizak, A. Erko, M. Seibt, and C. Rudolf: Combined XBIC/μ-XRF/μ-XAS/DLTS investigation of chemical character and electrical properties of Cu and Ni precipitates in silicon. Phys. Status Solidi C 6(8), 1868 (2009).

    Article  CAS  Google Scholar 

  42. T.A. Lafford, J. Villanova, N. Plassat, S. Dubois, and D. Camel: Synchrotron X-ray imaging applied to solar photovoltaic silicon. J. Phys.: Conf. Ser. 425(19), 192019 (2013).

    Google Scholar 

  43. T. Buonassisi, O.F. Vyvenko, A.A. Istratov, E.R. Weber, G. Hahn, D. Sontag, J-P. Rakotoniaina, O. Breitenstein, J. Isenberg, and R. Schindler: Assessing the role of transition metals in shunting mechanisms using synchrotron-based techniques. In 3rd IEEE World Conf. Photovolt. Energy Convers. (WCPEC-3 Organizing Committee, Osaka, 2003); pp. 1120–1123.

    Google Scholar 

  44. W. Seifert, O.F. Vyvenko, T. Arguirov, A. Erko, M. Kittler, C. Rudolf, M. Salome, M. Trushin, and I. Zizak: Synchrotron microscopy and spectroscopy for analysis of crystal defects in silicon. Phys. Status Solidi 6(3), 765 (2009).

    Google Scholar 

  45. W. Seifert, O. Vyvenko, T. Arguirov, M. Kittler, M. Salome, M. Seibt, and M. Trushin: Synchrotron-based investigation of iron precipitation in multicrystalline silicon. Superlattices Microstruct. 45(4–5), 168 (2009).

    Article  CAS  Google Scholar 

  46. J. Villanova, J. Segura-Ruiz, T. Lafford, and G. Martinez-Criado: Synchrotron microanalysis techniques applied to potential photovoltaic materials. J. Synchrotron Radiat. 19(4), 521 (2012).

    Article  CAS  Google Scholar 

  47. O.F. Vyvenko, T. Buonassisi, A.A. Istratov, E.R. Weber, M. Kittler, and W. Seifert: Application of synchrotron-radiation-based X-ray microprobe techniques for the analysis of recombination activity of metals precipitated at Si/SiGe misfit dislocations. J. Phys.: Condens. Matter 14, 13079 (2002).

    CAS  Google Scholar 

  48. R.R. Fahrtdinov, O.V. Feklisova, M.V. Grigoriev, D.V. Irzhak, D.V. Roshchupkin, and E.B. Yakimov: XBIC investigation of the grain boundaries in multicrystalline Si on the laboratory X-ray source. Solid State Phenom. 178–179, 226 (2011).

    Article  CAS  Google Scholar 

  49. M.V. Grigoriev, R.R. Fakhrtdinov, D.V. Irzhak, D.V. Roshchupkin, and E.B. Yakimov: XBIC using a laboratory X-ray source. Bull. Russ. Acad. Sci.: Phys. 77(1), 21 (2013).

    Article  CAS  Google Scholar 

  50. R.R. Fakhrtdinov, M.V. Grigoriev, and V.N. Pavlov: Optimization of the scanning process in the X-ray-beam-induced current method. J. Surf. Invest. 7(4), 685 (2013).

    Article  CAS  Google Scholar 

  51. M.V. Grigoriev, D.V. Roshchupkin, R.R. Fakhrtdinov, and E.B. Yakimov: Studying stacking faults in SiC by the XBIC method using a laboratory X-ray source. J. Surf. Invest. 8(1), 155 (2014).

    Article  CAS  Google Scholar 

  52. V.I. Orlov, O.V. Feklisova, and E.B. Yakimov: A comparison of EBIC, LBIC and XBIC methods as tools for multicrystalline Si characterization. Solid State Phenom. 205–206, 142 (2014).

    Google Scholar 

  53. Y.L. Shabel’nikova and E.B. Yakimov: Rate of generation of nonequilibrium charge carriers by a focused X-ray beam. J. Surf. Invest: X-Ray, Synchrotron Neutron Tech. 7(5), 859 (2013).

    Article  CAS  Google Scholar 

  54. Y. Shabelnikova and E. Yakimov: Diffusion length and grain boundary recombination activity determination by means of induced current methods. Superlattices Microstruct. 99, 108 (2016).

    Article  CAS  Google Scholar 

  55. Y.L. Shabel’nikova and E.B. Yakimov: Comparison between the EBIC and XBIC contrasts of dislocations and grain boundaries. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 6(6), 894 (2012).

    Article  CAS  Google Scholar 

  56. Y.L. Shabel’nikova, E.B. Yakimov, M.V. Grigor’ev, R.R. Fahrtdinov, V.A. Bushuev, and A. Bushuev: Calculating the extended defect contrast for the X-ray-beam-induced current method. Tech. Phys. Lett. 38(10), 913 (2012).

    Article  CAS  Google Scholar 

  57. R.P. Winarski, M.V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. Brian Stephenson, I. McNulty, and J. Maser: A hard X-ray nanoprobe beamline for nanoscale microscopy. J. Synchrotron Radiat. 19(6), 1056 (2012).

    Article  CAS  Google Scholar 

  58. B. West, S. Husein, M. Stuckelberger, B. Lai, J. Maser, B. Stripe, V. Rose, H. Guthrey, M. Al-jassim, and M. Bertoni: Correlation between grain composition and charge carrier collection in Cu(In,Ga)Se2 solar cells. In 2015 42nd IEEE Photovoltaic Specialists Conference (IEEE, New Orleans, 2015); p. 1.

    Google Scholar 

  59. B. West, M. Stuckelberger, H. Guthrey, L. Chen, B. Lai, J. Maser, J.J. Dynes, W. Shafarman, M. Al-Jassim, and M.I. Bertoni: Synchrotron X-ray characterization of alkali elements at grain boundaries in Cu(In,Ga)Se2 solar cells. In 2016 43rd IEEE Photovoltaic Specialists Conference (IEEE, Portland, 2016); p. 31–34.

    Chapter  Google Scholar 

  60. B. West, M. Stuckelberger, A. Jeffries, S. Gangam, B. Lai, B. Stripe, J. Maser, V. Rose, S. Vogt, and M. Bertoni: X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study. J. Synchrotron Radiat. 24, 288 (2017).

    Article  CAS  Google Scholar 

  61. B.M. West, M. Stuckelberger, H. Guthrey, L. Chen, B. Lai, J. Maser, V. Rose, W. Shafarman, M. Al-Jassim, and M.I. Bertoni: Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells. Nano Energy 32, 488 (2017).

    Article  CAS  Google Scholar 

  62. M. Stuckelberger, B. West, S. Husein, H. Guthrey, J. Maser, M. Al-Jassim, B. Stripe, V. Rose, and M.I. Bertoni: Latest developments in the X-ray based characterization of thin-film solar cells. In 2015 42nd IEEE Photovoltaic Specialists Conference (IEEE, New Orleans, 2015); p. 1–6.

    Google Scholar 

  63. B. Watts, D. Queen, A.L.D. Kilcoyne, T. Tyliszczak, F. Hellman, and H. Ade: Soft X-ray beam induced current technique. In 9th International Conference on X-ray Microscopy (IOP, Zurich, 2009); p. 12023.

    Google Scholar 

  64. M. Stuckelberger, T. Nietzold, G.N. Hall, B. West, J. Werner, C. Ballif, V. Rose, D.P. Fenning, and M.I. Bertoni: Elemental distribution and charge collection at the nanoscale on perovskite solar cells. 2016 43rd IEEE Photovoltaic Specialists Conference (IEEE, Portland, 2016); p. 1191.

    Chapter  Google Scholar 

  65. M. Stuckelberger, T. Nietzold, G.N. Hall, B. West, J. Werner, B. Niesen, C. Ballif, V. Rose, D.P. Fenning, and M.I. Bertoni: Charge collection in hybrid perovskite solar cells: Relation to the nanoscale elemental distribution. IEEE J. Photovolt. 7(2), 590 (2017).

    Article  Google Scholar 

  66. J. Hofstetter, D.P. Fenning, M.I. Bertoni, J.F. Lelievre, C. Del Canizo, and T. Buonassisi: Impurity-to-efficiency simulator: Predictive simulation of silicon solar cell performance based on iron content and distribution. Prog. Photovolt. Res. Appl. 19(4), 487 (2011).

    Article  CAS  Google Scholar 

  67. P.T. Pinard, H. Demers, F. Salvat, and R. Gauvin: PyPenelope. Available at: http://pypenelope.sourceforge.net/ (accessed October 4, 2016).

  68. F. Salvat, J.M. Fernandez-Varea, E. Acosta, and J. Sempau: PENELOPE, a code system for Monte Carlo simulation of electron and photon transport. Available at: http://www.oecd-nea.org/tools/abstract/detail/nea-1525 (accessed October 4, 2016).

  69. M.E. Stuckelberger, B. West, and M.I. Bertoni: X-ray beam induced current: Measuring electrical properties of solar cells at multiple length scales. Manuscr. Prep. (2017).

  70. R. Chakraborty, J. Serdy, B. West, M. Stuckelberger, B. Lai, J. Maser, M.I. Bertoni, M.L. Culpepper, and T. Buonassisi: Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy. Rev. Sci. Instrum. 86(11), 113705 (2015).

    Article  CAS  Google Scholar 

  71. K. Emery: Photovoltaic calibrations at the National Renewable Energy Laboratory and uncertainty analysis following the ISO 17025 guidelines. Technical Report, NREL, 2016.

  72. F. Pianezzi, A. Chirilă, P. Plösch, S. Seyrling, B. Buecheler, L. Kranz, C. Fella, and A.N. Tiwari: Solar cells utilizing small molecular weight organic semiconductors. Prog. Photovolt. Res. Appl. 20, 253 (2012).

    Article  CAS  Google Scholar 

  73. A. Gottwald, U. Kroth, M. Krumrey, M. Richter, F. Scholze, and G. Ulm: The PTB high-accuracy spectral responsivity scale in the VUV and X-ray range. Metrologia 43(2), S125 (2006).

    Article  CAS  Google Scholar 

  74. C.A. Klein: Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39(4), 2029 (1968).

    Article  CAS  Google Scholar 

  75. W. Yun, B. Lai, Z. Cai, J. Maser, D. Legnini, E. Gluskin, Z. Chen, A.A. Krasnoperova, Y. Vladimirsky, F. Cerrina, E. Di Fabrizio, and M. Gentili: Nanometer focusing of hard X-rays by phase zone plates. Rev. Sci. Instrum. 70(5), 2238 (1999).

    Article  CAS  Google Scholar 

  76. S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S.C. Gleber, D.J. Vine, L. Finney, J. Vonosinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt: The bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities. J. Synchrotron Radiat. 21(1), 66 (2014).

    Article  CAS  Google Scholar 

  77. B. West, M. Stuckelberger, L. Chen, R. Lovelett, B. Lai, J. Maser, and M.I. Bertoni: Growth of Cu(In,Ga)(S,Se)2 films: Unravelling the mysteries by in situ X-ray imaging. In 2016 43rd IEEE Photovoltaic Specialists Conference (IEEE, Portland, 2016); p. 1.

    Google Scholar 

  78. B. West, H. Guthrey, L. Chen, A. Jeffries, S. Bernardini, B. Lai, J. Maser, W. Shafarman, M. Al-Jasim, and M. Bertoni: Electrical and compositional characterization of gallium grading in Cu(In,Ga)Se2 solar cells. In 2014 41st IEEE Photovoltaic Specialists Conference (IEEE, Denver, 2014); p. 1726.

    Chapter  Google Scholar 

  79. S. Vogt: MAPS: A set of software tools for analysis and visualization of 3D X-ray fluorescence data sets. J. Phys. IV 104, 635 (2003).

    CAS  Google Scholar 

  80. National Institute of Standards and Technology (NIST). Available at: https://www.nist.gov/ (accessed February 20, 2017).

  81. AXO Dresden. Available at: http://www.axo-dresden.de/(accessed February 20, 2017).

  82. T. Nietzold, B. West, M. Stuckelberger, B. Lai, S. Vogt, and M.I. Bertoni: Quantifying X-ray fluorescence data using MAPS. J. Visual Experiments (2017), in preparation.

  83. M. Mantler: X-ray fluorescence analysis of multiple-layer films. Anal. Chem. Acta 188, 25 (1986).

    Article  CAS  Google Scholar 

  84. D.K.G. de Boer: Calculation of X-ray fluorescence intensities from bulk and multilayer samples. X-Ray Spectrom. 19(3), 145 (1990).

    Article  Google Scholar 

  85. B. Ravel and M. Newville: ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537 (2005).

    Article  CAS  Google Scholar 

  86. B. Ravel: Demeter Software Package. Available at: https://bruceravel.github.io/demeter/(accessed February 25, 2017).

  87. M. Tsukahara, S. Mitrovic, V. Gajdosik, G. Margaritondo, L. Pournin, M. Ramaioli, D. Sage, Y. Hwu, M. Unser, and T.M. Liebling: Coupled tomography and distinct-element-method approach to exploring the granular media microstructure in a jamming hourglass. Phys. Rev. E 77(6), 61306 (2008).

    Article  CAS  Google Scholar 

  88. J.W. Meyer: Determination of iron, calcium, and silicon in calcium silicates by X-ray fluorescence. Anal. Chem. 33(6), 692 (1961).

    Article  CAS  Google Scholar 

  89. S.A. McHugo, A.C. Thompson, C. Flink, E.R. Weber, G. Lamble, B. Gunion, A. MacDowell, R. Celestre, H.A. Padmore, and Z. Hussain: Synchrotron-based impurity mapping. J. Cryst. Growth 210(1–3), 395 (2000).

    Article  CAS  Google Scholar 

  90. S.A. McHugo, A.C. Thompson, A. Mohammed, G. Lamble, I. Périchaud, S. Martinuzzi, M. Werner, M. Rinio, W. Koch, H-U. Hoefs, and C. Haessler: Nanometer-scale metal precipitates in multicrystalline silicon solar cells. J. Appl. Phys. 89(8), 4282 (2001).

    Article  CAS  Google Scholar 

  91. A.A. Istratov, H. Hieslmair, and E.R. Weber: Iron contamination in silicon technology. Appl. Phys. A 70, 489 (2000).

    Article  CAS  Google Scholar 

  92. T. Buonassisi, A.A. Istratov, M. Heuer, M.A. Marcus, R. Jonczyk, J. Isenberg, B. Lai, Z. Cai, S. Heald, W. Warta, R. Schindler, G. Willeke, and E.R. Weber: Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells. J. Appl. Phys. 97(7), 74901 (2005).

    Article  CAS  Google Scholar 

  93. T. Buonassisi, M.A. Marcus, A. Istratov, M. Heuer, T.F. Ciszek, B. Lai, Z. Cai, and E.R. Weber: Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material. J. Appl. Phys. 97(6), 63503 (2005).

    Article  CAS  Google Scholar 

  94. T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, T.F. Ciszek, and E.R. Weber: Metal precipitation at grain boundaries in silicon: Dependence on grain boundary character and dislocation decoration. Appl. Phys. Lett. 89(4), 042102 (2006).

    Article  CAS  Google Scholar 

  95. T. Buonassisi, A.A. Istratov, M.A. Marcus, M. Heuer, M.D. Pickett, B. Lai, Z. Cai, S.M. Heald, and E.R. Weber: Local measurements of diffusion length and chemical character of metal clusters in multicrystalline silicon. Solid State Phenom. 108–109, 577 (2005).

    Article  Google Scholar 

  96. A.A. Istratov, T. Buonassisi, R.J. McDonald, A.R. Smith, R. Schindler, J.A. Rand, J.P. Kalejs, and E.R. Weber: Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length. J. Appl. Phys. 94(10), 6552 (2003).

    Article  CAS  Google Scholar 

  97. T. Buonassisi, A.A. Istratov, M.D. Pickett, J.P. Rakotoniaina, O. Breitenstein, M.A. Marcus, S.M. Heald, and E.R. Weber: Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon: Assessing the role of impurities in silicon nitride crucible lining material. J. Cryst. Growth 287(2), 402 (2006).

    Article  CAS  Google Scholar 

  98. T. Buonassisi, A.A. Istratov, S. Peters, C. Ballif, J. Isenberg, S. Riepe, W. Warta, R. Schindler, G. Willeke, Z. Cai, B. Lai, and E.R. Weber: Impact of metal silicide precipitate dissolution during rapid thermal processing of multicrystalline silicon solar cells. Appl. Phys. Lett. 87, 121918 (2005).

    Article  CAS  Google Scholar 

  99. T. Buonassisi, A.A. Istratov, M.D. Pickett, M. Heuer, J.P. Kalejs, G. Hahn, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, T.F. Ciszek, R.F. Clark, D.W. Cunningham, A.M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar, and E.R. Weber: Chemical natures and distributions of metal impurities in multicrystalline silicon materials. Prog. Photovolt. Res. Appl. 14(6), 512 (2006).

    Article  CAS  Google Scholar 

  100. T. Buonassisi, M. Heuer, A.A. Istratov, M.D. Pickett, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, and E.R. Weber: Transition metal co-precipitation mechanisms in silicon. Acta Mater. 55(18), 6119 (2007).

    Article  CAS  Google Scholar 

  101. S. Hudelson, B.K. Newman, S. Bernardis, D.P. Fenning, M.I. Bertoni, M.A. Marcus, S.C. Fakra, B. Lai, and T. Buonassisi: Retrograde melting and internal liquid gettering in silicon. Adv. Mater. 22(35), 3948 (2010).

    Article  CAS  Google Scholar 

  102. D.P. Fenning, B.K. Newman, M.I. Bertoni, S. Hudelson, S. Bernardis, M.A. Marcus, S.C. Fakra, and T. Buonassisi: Local melting in silicon driven by retrograde solubility. Acta Mater. 61(12), 4320 (2013).

    Article  CAS  Google Scholar 

  103. D.P. Fenning, J. Hofstetter, M.I. Bertoni, S. Hudelson, M. Rinio, J.F. Lelievre, B. Lai, C. Del Canizo, and T. Buonassisi: Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling. Appl. Phys. Lett. 98, 162103 (2011).

    Article  CAS  Google Scholar 

  104. D.P. Fenning, J. Hofstetter, A.E. Morishige, D.M. Powell, A. Zuschlag, G. Hahn, and T. Buonassisi: Darwin at high temperature: Advancing solar cell material design using defect kinetics simulations and evolutionary optimization. Adv. Energy Mater. 4(13), 1 (2014).

    Article  CAS  Google Scholar 

  105. A. Haarahiltunen, H. Savin, M. Yli-Koski, H. Talvitie, M.I. Asghar, and J. Sinkkonen: As-grown iron precipitates and gettering in multicrystalline silicon. Mater. Sci. Eng., B 159–160, 248 (2009).

    Article  CAS  Google Scholar 

  106. D.P. Fenning, J. Hofstetter, M.I. Bertoni, G. Coletti, B. Lai, C. Del Canizo, and T. Buonassisi: Precipitated iron: A limit on gettering efficacy in multicrystalline silicon. J. Appl. Phys. 113, 044521 (2013).

    Article  CAS  Google Scholar 

  107. D.P. Fenning, A.S. Zuschlag, M.I. Bertoni, B. Lai, G. Hahn, and T. Buonassisi: Improved iron gettering of contaminated multicrystalline silicon by high-temperature phosphorus diffusion. J. Appl. Phys. 113, 214504 (2013).

    Article  CAS  Google Scholar 

  108. J. Hofstetter, D.P. Fenning, D.M. Powell, A.E. Morishige, H. Wagner, and T. Buonassisi: Sorting metrics for customized phosphorus diffusion gettering. IEEE J. Photovolt. 4(6), 1421 (2014).

    Article  Google Scholar 

  109. M.A. Jensen, J. Hofstetter, A.E. Morishige, G. Coletti, B. Lai, D.P. Fenning, and T. Buonassisi: Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells. Appl. Phys. Lett. 106(20), 202104 (2015).

    Article  CAS  Google Scholar 

  110. W.K. Kim, E.A. Payzant, S. Yoon, and T.J. Anderson: In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction. J. Cryst. Growth 294(2), 231 (2006).

    Article  CAS  Google Scholar 

  111. R. Mainz and R. Klenk: In situ analysis of elemental depth distributions in thin films by combined evaluation of synchrotron X-ray fluorescence and diffraction. J. Appl. Phys. 109, 123515 (2011).

    Article  CAS  Google Scholar 

  112. D.M. Berg, F. Cheng, and W.N. Shafarman: H2S reaction of Se-capped metallic precursors to form Cu(In,Ga)(S,Se)2 absorber layers. 2014 41st IEEE Photovoltaic Specialists Conference (IEEE, Denver, 2014); p. 323.

    Chapter  Google Scholar 

  113. L. Chen, J. Lee, and W.N. Shafarman: The comparison of (Ag,Cu)(In,Ga)Se2 and Cu(In,Ga)Se2 thin films deposited by three-stage coevaporation. IEEE J. Photovolt. 4(1), 447 (2014).

    Article  Google Scholar 

  114. A.E. Morishige, H.S. Laine, M.A. Jensen, P.X.T. Yen, E.E. Looney, S. Vogt, B. Lai, H. Savin, and T. Buonassisi: Accelerating synchrotron-based characterization of solar materials: Development of flyscan capability. 2016 43rd IEEE Photovoltaic Specialists Conference (IEEE, Portland, 2016); p. 2006.

    Chapter  Google Scholar 

  115. M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, and F.C. Krebs: Stability of polymer solar cells. Adv. Mater. 24(5), 580 (2012).

    Article  CAS  Google Scholar 

  116. D.M. Tanenbaum, M. Hermenau, E. Voroshazi, M.T. Lloyd, Y. Galagan, B. Zimmermann, M. Hosel, H.F. Dam, M. Jørgensen, S.A. Gevorgyan, S. Kudret, W. Maes, L. Lutsen, D. Vanderzande, U. Wurfel, R. Andriessen, R. Rosch, H. Hoppe, G. Teran-Escobar, M. Lira-Cantu, A. Rivaton, G.Y. Uzunoglu, D. Germack, B. Andreasen, M.V. Madsen, K. Norrman, and F.C. Krebs: The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices. RSC Adv. 2, 882 (2012).

    Article  CAS  Google Scholar 

  117. B.A. Collins, J.R. Tumbleston, and H. Ade: Miscibility, crystallinity, and phase development in P3HT/PCBM solar cells: Toward an enlightened understanding of device morphology and stability. J. Phys. Chem. Lett. 2(24), 3135 (2011).

    Article  CAS  Google Scholar 

  118. B.A. Collins, J.E. Cochran, H. Yan, E. Gann, C. Hub, R. Fink, C. Wang, T. Schuettfort, C.R. McNeill, M.L. Chabinyc, and H. Ade: Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11(6), 536 (2012).

    Article  CAS  Google Scholar 

  119. M.P. Nikiforov, B. Lai, W. Chen, S. Chen, R.D. Schaller, J. Strzalka, J. Maser, and S.B. Darling: Detection and role of trace impurities in high-performance organic solar cells. Energy Environ. Sci. 6(5), 1513 (2013).

    Article  CAS  Google Scholar 

  120. T. Agostinelli, S. Lilliu, J.G. Labram, M. Campoy-Quiles, M. Hampton, E. Pires, J. Rawle, O. Bikondoa, D.D.C. Bradley, T.D. Anthopoulos, J. Nelson, and J.E. MacDonald: Real-time investigation of crystallization and phase-segregation dynamics in P3HT:PCBM solar cells during thermal annealing. Adv. Funct. Mater. 21(9), 1701 (2011).

    Article  CAS  Google Scholar 

  121. S. Lilliu, T. Agostinelli, E. Pires, M. Hampton, J. Nelson, and J.E. MacDonald: Dynamics of crystallization and disorder during annealing of P3HT/PCBM bulk heterojunctions. Macromolecules 44(8), 2725 (2011).

    Article  CAS  Google Scholar 

  122. Z.M. Beiley, E.T. Hoke, R. Noriega, J. Dacuña, G.F. Burkhard, J.A. Bartelt, A. Salleo, M.F. Toney, and M.D. McGehee: Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells. Adv. Energy Mater. 1(5), 954 (2011).

    Article  CAS  Google Scholar 

  123. J.A. Bartelt, Z.M. Beiley, E.T. Hoke, W.R. Mateker, J.D. Douglas, B.A. Collins, J.R. Tumbleston, K.R. Graham, A. Amassian, H. Ade, J.M.J. Fréchet, M.F. Toney, and M.D. McGhee: The importance of fullerene percolation in the mixed regions of polymer–fullerene bulk heterojunction solar cells. Adv. Energy Mater. 3(3), 364 (2013).

    Article  CAS  Google Scholar 

  124. J. Rivnay, R. Steyrleuthner, L.H. Jimison, A. Casadei, Z. Chen, M.F. Toney, A. Facchetti, D. Neher, and A. Salleo: Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44(13), 5246 (2011).

    Article  CAS  Google Scholar 

  125. S. Qian, S. Misra, J. Lu, Z. Yu, L. Yu, J. Xu, J. Wang, L. Xu, Y. Shi, K. Chen, and P.R.i. Cabarrocas: Full potential of radial junction Si thin film solar cells with advanced junction materials and design. Appl. Phys. Lett. 107(4), 43902 (2015).

    Article  CAS  Google Scholar 

  126. J-H. Im, J. Luo, M. Franckevicius, N. Pellet, P. Gao, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, and N-G. Park: Nanowire perovskite solar cell. Nano Lett. 15(3), 2120 (2015).

    Article  CAS  Google Scholar 

  127. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M.H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H.Q. Xu, L. Samuelson, K. Deppert, M.T. Borgström, W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, B. O’Regan, M. Grätzel, A. Polman, H.A. Atwater, T. Mårtensson, C. Colombo, M. Heiβ, M. Grätzel, A. Fontcuberta i Morral, J.F. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, M.T. Borgström, E.C. Garnett, M.L. Brongersma, Y. Cui, M.D. McGehee, H. Goto, J. Kupec, R.L. Stoop, B. Witzigmann, L. Hu, G. Chen, N. Anttu, H.Q. Xu, M.D. Kelzenberg, E. Garnett, P.D. Yang, M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, M.T. Borgström, T. Mårtensson, N. Anttu, H.Q. Xu, P.M. Wu, N. Anttu, H.Q. Xu, L. Samuelson, M.E. Pistol, S. Münch, H.J. Joyce, A. Mishra, M.H.M. van Weert, A. Yella, A.H. Ip, E. Popov, M. Nevière, B. Gralak, G. Tayeb, J.G.E. Jellison, and F.A. Modine: InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339(6123), 1057 (2013).

    Article  CAS  Google Scholar 

  128. P. Parkinson, Y.H. Lee, L. Fu, S. Breuer, H.H. Tan, and C. Jagadish: Three-dimensional in situ photocurrent mapping for nanowire photovoltaics. Nano Lett. 13(4), 1405 (2013).

    Article  CAS  Google Scholar 

  129. P. Krogstrup, H.I. Jørgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral: Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photonics 7, 306 (2013).

    Article  CAS  Google Scholar 

  130. J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi: Phase separation in single InxGa1− xN nanowires revealed through a hard X-ray synchrotron nanoprobe. Nano Lett. 14, 1300 (2014).

    Article  CAS  Google Scholar 

  131. J. Segura-Ruiz, G. Martínez-Criado, M.H. Chu, C. Denker, J. Malindretos, and A. Rizzi: Synchrotron nanoimaging of single In-rich InGaN nanowires. J. Appl. Phys. 113, 136511 (2013).

    Article  CAS  Google Scholar 

  132. G. Martínez-Criado, J. Segura-Ruiz, B. Alén, J. Eymery, A. Rogalev, R. Tucoulou, and A. Homs: Exploring single semiconductor nanowires with a multimodal hard X-ray nanoprobe. Adv. Mater. 26(46), 7873 (2014).

    Article  CAS  Google Scholar 

  133. G. Martínez-Criado, A. Homs, B. Alén, J.A. Sans, J. Segura-Ruiz, A. Molina-Sanchez, J. Susini, J. Yoo, and G.C. Yi: Probing quantum confinement within single core-multishell nanowires. Nano Lett. 12(11), 5829 (2012).

    Article  CAS  Google Scholar 

  134. M.H. Chu, G. Martínez-Criado, J. Segura-Ruiz, S. Geburt, and C. Ronning: Local lattice distortions in single Co-implanted ZnO nanowires. Appl. Phys. Lett. 103, 141911 (2013).

    Article  CAS  Google Scholar 

  135. M.H. Chu, G. Martínez-Criado, J. Segura-Ruiz, S. Geburt, and C. Ronning: Structural order in single Co-implanted ZnO nanowires. Phys. Status Solidi 211(2), 483 (2014).

    Article  CAS  Google Scholar 

  136. R.A. Rosenberg, G.K. Shenoy, F. Heigl, S-T. Lee, P-S.G. Kim, X-T. Zhou, and T.K. Sham: Determination of the local structure of luminescent sites in ZnS nanowires using x-ray excited optical luminescence. Appl. Phys. Lett. 87, 253105 (2005).

    Article  CAS  Google Scholar 

  137. E.L. Unger, A.R. Bowring, C.J. Tassone, V.L. Pool, A. Gold-Parker, R. Cheacharoen, K.H. Stone, E.T. Hoke, M.F. Toney, and M.D. McGehee: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26(24), 7158 (2014).

    Article  CAS  Google Scholar 

  138. J. Werner, G. Dubuis, A. Walter, P. Löper, S-J. Moon, S. Nicolay, M. Morales-Masis, S. De Wolf, B. Niesen, and C. Ballif: Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol. Energy Mater. Sol. Cells 141, 407 (2015).

    Article  CAS  Google Scholar 

  139. M. Stuckelberger, T. Nietzold, G. Hall, B. West, X. Meng, J. Werner, B. Niesen, B. Lai, J. Maser, V. Rose, C. Ballif, and M.I. Bertoni: Low degradation of metal-halide perovskite layers under x-ray irradiation enables synchrotron-based characterization methods. Presented at the MRS Spring Meet. (MRS, Phoenix, 2016).

    Google Scholar 

  140. S.Y. Leblebici, L. Leppert, Y. Li, S.E. Reyes-Lillo, S. Wickenburg, E. Wong, J. Lee, M. Melli, D. Ziegler, D.K. Angell, D.F. Ogletree, P.D. Ashby, F.M. Toma, J.B. Neaton, I.D. Sharp, and A. Weber-Bargioni: Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 1(8), 16093 (2016).

    Article  CAS  Google Scholar 

  141. E. Nazaretski, W. Xu, N. Bouet, J. Zhou, H. Yan, X. Huang, and Y.S. Chu: Development and characterization of monolithic multilayer Laue lens nanofocusing optics. Appl. Phys. Lett. 108, 261102 (2016).

    Article  CAS  Google Scholar 

  142. Y. Chu, H. Yan, E. Nazaretski, S. Kalbfleisch, X. Huang, K. Lauer, and N. Bouet: NSLS HXN News: Hard X-ray nanoprobe facility at the national synchroton light source II. SPIE Newsroom, August 31, 2015.

  143. J. Maser, B. Lai, T. Buonassisi, Z. Cai, S. Chen, L. Finney, S-C. Gleber, C. Jacobsen, C. Preissner, C. Roehrig, V. Rose, D. Shu, D. Vine, and S. Vogt: A next-generation hard X-ray nanoprobe beamline for in situ studies of energy materials and devices. Metall. Mater. Trans. A 45(1), 85 (2014).

    Article  CAS  Google Scholar 

  144. M.L. Cummings, T.Y. Chien, C. Preissner, V. Madhavan, D. Diesing, M. Bode, J.W. Freeland, and V. Rose: Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast. Ultramicroscopy 112, 22 (2012).

    Article  CAS  Google Scholar 

  145. N. Shirato, M. Cummings, H. Kersell, Y. Li, B. Stripe, D. Rosenmann, S.W. Hla, and V. Rose: Elemental fingerprinting of materials with sensitivity at the atomic limit. Nano Lett. 14(11), 6499 (2014).

    Article  CAS  Google Scholar 

  146. W. Yang, X. Huang, R. Harder, J.N. Clark, I.K. Robinson, and H. Mao: Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nat. Commun. 4, 1680 (2013).

    Article  CAS  Google Scholar 

  147. M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C.M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer: Ptychographic X-ray computed tomography at the nanoscale. Nature 467(7314), 436 (2010).

    Article  CAS  Google Scholar 

  148. A. Ulvestad, A. Singer, J.N. Clark, H.M. Cho, J.W. Kim, R. Harder, J. Maser, Y.S. Meng, and O.G. Shpyrko: Topological defect dynamics in operando battery nanoparticles. Science 348(6241), 1344 (2015).

    Article  CAS  Google Scholar 

  149. A. Ulvestad, M.J. Welland, W. Cha, Y. Liu, J.W. Kim, R. Harder, E. Maxey, J.N. Clark, M.J. Highland, H. You, P. Zapol, S.O. Hruszkewycz, and G.B. Stephenson: Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation. Nat. Mater. 4842, 1 (2017).

    Google Scholar 

  150. Y. Liu, P.P. Lopes, W. Cha, R. Harder, J. Maser, E. Maxey, M.J. Highland, N.M. Markovic, S.O. Hruszkewycz, G.B. Stephenson, H. You, and A. Ulvestad: Stability limits and defect dynamics in Ag nanoparticles probed by Bragg coherent diffractive imaging. Nano Lett. 17(3), 1595 (2017).

    Article  CAS  Google Scholar 

  151. D. Einfeld: Multi-bend achromat lattices for storage ring light sources. Synchrotron Radiat. News 27(6), 4 (2014).

    Article  Google Scholar 

  152. R.C. Alig, S. Bloom, and C.W. Struck: Scattering by ionization and phonon emission in semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 22(12), 5565 (1980).

    Article  Google Scholar 

  153. A. Walsh and K.T. Butler: Prediction of electron energies in metal oxides. Acc. Chem. Res. 47(2), 364 (2014).

    Article  CAS  Google Scholar 

  154. S.O. Kasap and J.A. Rowlands: Direct-conversion flat-panel X-ray image sensors for digital radiography. Proc. IEEE 90(4), 591 (2002).

    Article  CAS  Google Scholar 

  155. J. Emara, T. Schnier, N. Pourdavoud, T. Riedl, K. Meerholz, and S. Olthof: Impact of film stoichiometry on the ionization energy and electronic structure of CH3NH3PbI3 perovskites. Adv. Mater. 28(3), 553 (2016).

    Article  CAS  Google Scholar 

  156. J. Grant, W. Cunningham, A. Blue, V. O’Shea, J. Vaitkus, E. Baubas, and M. Rahman: Wide bandgap semiconductor detectors for harsh radiation environments. Nucl. Instrum. Methods Phys. Res., Sect. A 546, 213 (2005).

    Article  CAS  Google Scholar 

  157. A. Owens and A. Peacock: Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 531, 18 (2004).

    Article  CAS  Google Scholar 

  158. S. Awadalla: Solid-state Radiation Detectors: Technology and Applications (CRC Press, Boca Raton, 2015).

    Google Scholar 

  159. L.I. Berger: Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2015).

    Google Scholar 

  160. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, and L.A. Boatner: Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93(1), 1 (2003).

    Article  CAS  Google Scholar 

  161. O.E. Semonin, J.M. Luther, S. Choi, H-Y. Chen, J. Gao, A.J. Nozik, and M.C. Beard: Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530 (2011).

    Article  CAS  Google Scholar 

  162. W.T. Elam, B.D. Ravel, and J.R. Sieber: A new atomic database for X-ray spectroscopic calculations. Radiat. Phys. Chem. 63(2), 121 (2002).

    Article  CAS  Google Scholar 

  163. B.L. Henke: X-ray interactions with matter. Available at: http://henke.lbl.gov/optical_constants/ (accessed February 25, 2017).

  164. V.A. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini: A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta, Part B 62(1), 63 (2007).

    Article  CAS  Google Scholar 

  165. PyMCA. Available at: http://pymca.sourceforge.net/index.html (accessed February 26, 2017).

Download references

ACKNOWLEDGMENTS

We greatly acknowledge Jérémie Werner, Bjoern Niesen, Christophe Ballif (all EPFL, Switzerland), Harvey Guthrey, Mowafak Al-Jassim (all NREL, USA), Lei Chen, William Shafarman (all U. of Delaware, USA) for providing solar cells; Rupak Chakraborty, Jim Serdy, Tonio Buonassisi (all MIT, USA) for their contributions building the heating stage, David Fenning (UC San Diego, USA) for fruitful discussions, Chris Roehrig and Martin Holt (both ANL, USA) for practical help with XBIC measurements, Yanqi Luo (UC San Diego, USA) for measurement of the PbI2 reference, and Genevieve Hall, Sebastian Husein, Srikanth Gangam, and April Jeffries (all ASU, USA) for their contribution to measurements and discussions.

We acknowledge funding from the U.S. Department of Energy under contract DEEE0005848. Use of the Center for Nanoscale Materials and the Advanced Photon Source, both Office of Science user facilities, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This material is based upon work supported in part by the National Science Foundation (NSF) and the Department of Energy (DOE) under NSF CA No. EEC-1041895. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of NSF or DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stuckelberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuckelberger, M., West, B., Nietzold, T. et al. Engineering solar cells based on correlative X-ray microscopy. Journal of Materials Research 32, 1825–1854 (2017). https://doi.org/10.1557/jmr.2017.108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.108

Navigation