Skip to main content
Log in

Effect of Ga content on magnetic properties of BaFe12−xGaxO19/epoxy composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The article reports about the effect of Ga content on magnetic properties of 30 wt% BaFe12−xGaxO19/epoxy(x = 0.1, 0.3, 0.6, 0.9 and 1.2) composites with uniform and aligned (due to the action of external magnetic field under preparation) distribution of hexaferrite filler in epoxy matrix. The XRD investigations of BaFe12−xGaxO19/epoxy (x = 0.1, 0.3, 0.6, 0.9 and 1.2) composites have revealed that the alignment degree of a crystalline hexaferrite phase with a hexagonal unit cell of crystal structure and P63/mmc space group in composites with uniform filler distribution is near 0.5 and for the composites with aligned filler distribution it is 1 for the direction along the applied magnetic field and it is 0 for the direction across the applied magnetic field, respectively. The investigation of the hysteresis loops of BaFe12−xGaxO19/epoxy (x = 0.1–1.2) composites with the aligned distribution of filler for both directions to the applied magnetic field has shown that magnetic properties across the alignment direction are superior in comparison with similar measurements taken on composites with uniform filler distribution. It was shown that anisotropy of magnetic properties of BaFe12−xGaxO19/epoxy (x = 0.1–1.2) composites is observed for all the investigated composites with the aligned distribution of the filler. Squareness ratio Ms along/Ms across decreases with Ga content increase, while the value Hc along/Hc across approaches to 1. Such behavior of magnetic characteristics of the investigated composites indicates clearly the decrease in magnetocrystalline anisotropy of Ga-substituted hexaferrite under Ga content increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

All data included in this paper are available upon request by contact with the contact corresponding author.

References

  1. Kong LB, Li ZW, Liu L, Huang R, Abshinova M, Yang ZH, Tang CB, Tan PK, Deng CR, Matitsine S (2013) Recent progress in some composite materials and structures for specific electromagnetic applications. Int Mater Rev 58:203–259

    Article  CAS  Google Scholar 

  2. Zahari MH, Guan BH, Meng CE, Mansor MFC, Chuan LK (2016) EMI shielding effectiveness of composites based on barium ferrite. PANI and MWCNT PIER M 52:79–87

    Article  Google Scholar 

  3. Shepherd P, Mallick KK, Green RJ (2007) Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation. J Magn Magn Mater 311:683–692

    Article  CAS  Google Scholar 

  4. Vovchenko L, Matzui L, Brusylovets O, Oliynyk V, Launets V, Shames A, Yakovenko O, Skoryk N (2016) Synthesis and properties of ferrite nanopowders for epoxy-barium hexaferrite-nanocarbon composites for microwave applications. Materialwiss Werkst 47:139–148

    Article  CAS  Google Scholar 

  5. Ghzaiel TB, Dhaoui W, Schoenstein F, Talbot P, Mazaleyrat F (2017) Substitution effect of Me = Al, Bi, Cr and Mn to the microwave properties of polyaniline/BaMeFe11O19 for absorbing electromagnetic waves. J Alloys Compd 692:774–786

    Article  CAS  Google Scholar 

  6. Trukhanov AV, Kostishyn VG, Panina LV, Korovushkin VV, Turchenko VA, Thakur P, Thakur A, Yang Y, Vinnik DA, Yakovenko ES, Matzui LY, Trukhanova EL, Trukhanov SV (2018) Control of electromagnetic properties in substituted M-type hexagonal ferrites. J Alloys Compd 754:247–256

    Article  CAS  Google Scholar 

  7. Trukhanov SV, Trukhanov AV, Kostishyn VG, Panina LV, Trukhanov AV, Turchenko VA, Tishkevich DI, Trukhanova EL, Yakovenko OS, Matzui LY (2017) Investigation into the structural features and microwave absorption of doped barium hexaferrites. Dalton Trans 46:9010–9021

    Article  CAS  Google Scholar 

  8. Trukhanov AV, Trukhanov SV, Kostishyn VG, Panina LV, Korovushkin VV, Turchenko VA, Vinnik DA, Yakovenko ES, Zagorodnii VV, Launetz VL, Oliynyk VV, Zubar TI, Tishkevich DI, Trukhanova EL (2018) Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J Magn Magn Mater 462:127–135

    Article  CAS  Google Scholar 

  9. Serier H, Demourgues A, Gaudon M (2010) Investigation of Ga substitution in ZnO powder and opto-electronic properties. Inorg Chem 49:6853–6858

    Article  CAS  Google Scholar 

  10. Trukhanov S, Trukhanov A, Kostishyn V, Zabeivorota N, Panina L, Trukhanov A, Turchenko V, Trukhanova E, Oleynik V, Yakovenko O, Matzui L, Zhivulin V (2019) High-frequency absorption properties of gallium weakly doped barium hexaferrites. Philos Mag 99:585–605

    Article  CAS  Google Scholar 

  11. Trukhanov S, Trukhanov A, Kostishyn V, Panina L, An Trukhanov, Turchenko V, Tishkevich D, Trukhanova E, Oleynik V, Yakovenko E, Matzui L, Vinnik D (2017) Magnetic, dielectric and microwave properties of the BaFe12−xGaxO19 (x ≤ 1.2) solid solutions at room temperature. J Magn Magn Mater 442:300–310

    Article  CAS  Google Scholar 

  12. Trukhanov S, Trukhanov A, Kostishyn V, Panina L, An Trukhanov, Turchenko V, Tishkevich D, Trukhanova E, Yakovenko O, Matzui L, Vinnik D, Karpinsky D (2017) Effect of gallium doping on electromagnetic properties of barium hexaferrite. J Phys Chem Sol 111:142–152

    Article  CAS  Google Scholar 

  13. Trukhanov AV, Kostishyn VG, Panina LV, Jabarov SH, Korovushkin VV, Trukhanov SV, Trukhanova EL (2017) Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram Int 43:12822–12827

    Article  CAS  Google Scholar 

  14. Matzui LY, Trukhanov AV, Yakovenko OS, Vovchenko LL, Zagorodnii VV, Oliynyk VV, Borovoy MO, Trukhanova EL, Astapovich KA, Karpinsky DV, Trukhanov SV (2019) Functional magnetic composites based on hexaferrites: correlation of the composition, magnetic and high-frequency properties. Nanomaterials 9:1720

    Article  CAS  Google Scholar 

  15. Ni Y, Zhang Z, Nlebedim CI, Jiles DC (2015) Influence of Ga-concentration on the electrical and magnetic properties of magnetoelectric CoGaxFe2−xO4/BaTiO3 composite. J Appl Phys 117:17B906

    Article  Google Scholar 

  16. Vovchenko L, Perets Y, Ovsienko I, Matzui L, Oliynyk V, Launetz V (2012) Shielding coatings based on carbon-polymer composites. Surf and Coatings Techn 211:196–199

    Article  CAS  Google Scholar 

  17. Yakovenko O, Matzui L, Vovchenko L, Zhuravkov A (2014) Development of carbon nanotube-polymer composites with oriented distribution of MWCNTs induced by electric field. Phys Stat Sol (A) 211:2718–2722

    Article  CAS  Google Scholar 

  18. Sagalianov IY, Vovchenko LL, Matzui LY, Lazarenko AA, Oliynyk VV, Lozitsky OV, Ritter U (2016) Optimization of multilayer electromagnetic shields: A genetic algorithm approach. Materialwiss Werkst 47:263–271

    Article  Google Scholar 

  19. Vovchenko LL, Lozitsky OV, Sagalianov IY, Matzui LY, Oliynyk VV, Launets VL (2016) Modeling of gradient composite structures for shielding of microwaves. Mol Cryst Liq Cryst 639:105–114

    Article  CAS  Google Scholar 

  20. Yakovenko OS, Matzui LY, Vovchenko LL, Trukhanov AV, Kazakevich IS, Trukhanov SV, Prylutskyy YI, Ritter U (2017) Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J Mater Sci 52:5345–5358. https://doi.org/10.1007/s10853-017-0776-4

    Article  CAS  Google Scholar 

  21. Lisjak D, Ovtar S (2013) The alignment of barium ferrite nanoparticles from their suspensions in electric and magnetic fields. J Phys Chem B 117:1644–1650

    Article  CAS  Google Scholar 

  22. Trukhanov A, Trukhanov S, Kostishyn V, Panina L, Kazakevich I, An Trukhanov, Natarov O, Chitanov D, Turchenko V, Oleynik V, Yakovenko E, Macuy L, Trukhanova E (2017) Microwave properties of the Ga-substituted BaFe12O19 hexaferrites. Mater Res Express 4:076106

    Article  Google Scholar 

  23. Wei G, Wang T, Zhang H, Liu X, Han Y, Chang Y, Qiao L, Li F (2018) Enhanced microwave absorption of barium cobalt hexaferrite composite with improved bandwidth via c-plane alignment. J Magn Magn Mater 471:267–273

    Article  Google Scholar 

  24. Pullar RC (2014) Magnetic properties of aligned Co2Z hexagonal Z-ferrite fibers. Int J Appl Ceram Technol 11:451–456

    Article  CAS  Google Scholar 

  25. Turchenko V, Trukhanov A, Trukhanov S, Bobrikov I, Balagurov A (2016) Features of crystal and magnetic structures of solid solutions BaFe12-xDxO19 (D = Al3+, In3+; x = 0.1) in a wide temperature range. Eur Phys J Plus 131:82

    Article  Google Scholar 

  26. Gorter E (1957) Saturation magnetization of some ferrimagnetic oxides with hexagonal crystal structures. Proc IEEE Part B: Radio Electron Eng 104:255

    Google Scholar 

  27. Turchenko V, Trukhanov S, Balagurov A, Kostishyn V, Trukhanov A, Panina L, Trukhanova E (2018) Features of crystal structure and dual ferroic properties of BaFe12-xMexO19 (Me = In3+ and Ga3+; x = 0.1–1.2). J Magn Magn Mater 464:139–147

    Article  CAS  Google Scholar 

  28. Trukhanov A, Darwish M, Panina L, Morchenko A, Kostishyn V, Turchenko V, Vinnik D, Trukhanova E, Astapovich K, Kozlovskiy A, Zdorovets M, Trukhanov S (2019) Features of crystal and magnetic structure of the BaFe12−xGaxO19 (x ≤ 2) in the wide temperature range. J Alloys Compd 791:522–529

    Article  CAS  Google Scholar 

  29. Trukhanov S, Trukhanov A, Kostishyn V, Panina L, Turchenko V, Kazakevich I, An Trukhanov, Trukhanova E, Natarov V, Balagurov A (2017) Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J Magn Magn Mater 426:554–562

    Article  CAS  Google Scholar 

Download references

Funding

The publication contains results of studies conducted within the framework of the research grant from the Ministry of Education and Science of Ukraine (18BF051-02) and were supported under the NATO for Peace Programme, project G5697 “Globular Carbon based Structures and Metamaterials for Enhanced Electromagnetic Protection (CERTAIN)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Yakovenko.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, O., Lazarenko, O., Matzui, L. et al. Effect of Ga content on magnetic properties of BaFe12−xGaxO19/epoxy composites. J Mater Sci 55, 9385–9395 (2020). https://doi.org/10.1007/s10853-020-04661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04661-z

Navigation