Skip to main content
Log in

Sensing performance of gas sensors fabricated from controllably grown ZnO-based nanorods on seed layers

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZnO nanorods (NRs) grown on different ZnO seed layers deposited at various Ar–O2 ambient conditions, and the morphologies of the seed layers that affect their response to nitric oxide (NO) gas were investigated. The sensing performance of the devices fabricated with the seed layers deposited under an O2-rich condition tends to deteriorate. We believe that the surface roughness, grain size, and defect concentration of the seed layer are responsible for this phenomenon. Despite the response to the gas was found to be less dependent on NR length, the gas sensing response is significantly dependent on the oxygen vacancy concentration and the exposure of the NR structure to the NO gas ambient surface. Excellent gas response (57.5% at 1 ppm and 7.1% at 100 ppb of NO gas) was achieved at room temperature—superior to the response presented by other proposed methods. This study not only proposes the potential of ZnO-NRs for high-performance NO gas sensor devices but also offers a simple and low-cost method to optimize the response without using any catalyst and additional treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B Chem 160:580–591

    Article  CAS  Google Scholar 

  2. Shehada N, Cancilla JC, Torrecilla JS, Pariente ES, Brönstrup G, Christiansen S, Johnson DW, Leja M, Davies MPA, Liran O, Peled N, Haick H (2016) Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano 10:7047–7057

    Article  CAS  Google Scholar 

  3. Di Natale C, Paolesse R, Martinelli E, Capuano R (2014) Solid-state gas sensors for breath analysis: a review. Anal Chim Acta 824:1–7

    Article  CAS  Google Scholar 

  4. Zhang S-L, Lim J-O, Huh J-S, Lee W (2012) Selective growth of ZnO nanorods and its gas sensor application. IEEE Sens J 12:3143–3148

    Article  CAS  Google Scholar 

  5. Öztürk S, Kilinç N, Öztürk ZZ (2013) Fabrication of ZnO nanorods for NO2 sensor applications: effect of dimensions and electrode position. J Alloys Compd 581:196–201

    Article  CAS  Google Scholar 

  6. Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens Actuators A Phys 267:242–261

    Article  CAS  Google Scholar 

  7. Galstyan V, Comini E, Ponzoni A, Sberveglieri V, Sberveglieri G (2016) ZnO quasi-1D nanostructures: synthesis, modeling, and properties for applications in conductometric chemical sensors. Chemosensors 4:6

    Article  CAS  Google Scholar 

  8. Ganesh RS, Mani GK, Elayaraja R, Durgadevi E, Navaneethan M, Ponnusamy S, Tsuchiya K, Muthamizhchelvan C, Hayakawa Y (2018) Surfactant free controllable synthesis of 2D–1D ZnO hierarchical nanostructure and its gas sensing properties. Appl Surf Sci 449:838–845

    Article  CAS  Google Scholar 

  9. Simanjuntak F, Singh P, Chandrasekaran S, Lumbantoruan FJ, Yang C-C, Huang C-J, Lin C-C, Tseng T-Y (2017) Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell. Semicond Sci Technol 32:12

    Article  CAS  Google Scholar 

  10. Wang M, Xing C, Cao K, Meng L, Liu J (2014) Alignment-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. J Phys Chem Solids 75:808–817

    Article  CAS  Google Scholar 

  11. Ganbavle VV, Inamdar SI, Agawane GL, Kim JH, Rajpure KY (2016) Synthesis of fast response, highly sensitive and selective Ni:ZNO based NO2 sensor, vol 286. Elsevier B.V., Amsterdam

    Google Scholar 

  12. Basyooni MA, Shaban M, El Sayed AM (2017) Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  13. Zhang B, Li M, Song Z, Kan H, Yu H, Liu Q, Zhang G, Liu H (2017) Sensitive H2S gas sensors employing colloidal zinc oxide quantum dots. Sens Actuators B Chem 249:558–563

    Article  CAS  Google Scholar 

  14. Khojier K, Savaloni H (2015) Improving the H2 gas sensitivity of ZnO thin films by modifying the annealing conditions. J Electron Mater 44:3458–3464

    Article  CAS  Google Scholar 

  15. da Silva LF, M’Peko JC, Catto AC, Bernardini S, Mastelaro VR, Aguir K, Ribeiro C, Longo E (2017) UV-enhanced ozone gas sensing response of ZnO–SnO2 heterojunctions at room temperature. Sens Actuators B Chem 240:573–579

    Article  CAS  Google Scholar 

  16. Cheng JJ, Nicaise SM, Berggren KK, Gradečak S (2016) Dimensional tailoring of hydrothermally grown zinc oxide nanowire arrays. Nano Lett 16:753–759

    Article  CAS  Google Scholar 

  17. Azzez SA, Hassan Z, Hassan JJ, Alimanesh M, Rasheed HS, Sabah FA, Abdulateef SA (2016) Hydrothermal synthesis of highly crystalline ZnO nanorod arrays: dependence of morphology and alignment on growth. In: AIP Conference Proceedings, vol. 1733, pp. 1–5

  18. Song J, Lim S (2007) Effect of seed layer on the growth of ZnO nanorods. J Phys Chem C111:596–600

    Google Scholar 

  19. Guillemin S, Consonni V, Appert E, Puyoo E, Rapenne L, Roussel H (2012) Critical nucleation effects on the structural relationship between ZnO seed layer and nanowires. J Phys Chem C116:25106–25111

    Google Scholar 

  20. Chang CJ, Hung ST, Lin CK, Chen CY, Kuo EH (2010) Selective growth of ZnO nanorods for gas sensors using ink-jet printing and hydrothermal processes. Thin Solid Films 519:1693–1698

    Article  CAS  Google Scholar 

  21. Singh P, Simanjuntak FM, Kumar A, Tseng T (2018) Resistive switching behavior of Ga doped ZnO-nanorods film conductive bridge random access memory. Thin Solid Films 660:828–833

    Article  CAS  Google Scholar 

  22. Singh P, Hu L-L, Zan H-W, Tseng T-Y (2019) Highly sensitive nitric oxide gas sensor based on ZnO-nanorods vertical resistor operated at room temperature. Nanotechnology 30:095501

    Article  CAS  Google Scholar 

  23. Zhang JP, He G, Zhu LQ, Liu M, Pan SS, Zhang LD (2007) Effect of oxygen partial pressure on the structural and optical properties of ZnO film deposited by reactive sputtering. Appl Surf Sci 253:9414–9421

    Article  CAS  Google Scholar 

  24. Bai SN, Wu SC (2011) Synthesis of ZnO nanowires by the hydrothermal method, using sol-gel prepared ZnO seed films. J Mater Sci: Mater Electron 22:339–344

    CAS  Google Scholar 

  25. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, Upper Saddle River

    Google Scholar 

  26. Huang H-W, Kang C-F, Lai F-I, He J-H, Lin S-J, Chueh Y-L (2013) Stability scheme of ZnO-thin film resistive switching memory: influence of defects by controllable oxygen pressure ratio. Nanoscale Res Lett 8:483

    Article  CAS  Google Scholar 

  27. Lee J-B, Park C-K, Park J-S (2009) Physical properties of RF-sputtered ZnO thin films: effects of two-step deposition. J Korean Phys Soc 50:1073–1078

    Article  Google Scholar 

  28. Tien L, Chen Y (2012) Effect of surface roughness on nucleation and growth of vanadium pentoxide nanowires. Appl Surf Sci 258:3584–3588

    Article  CAS  Google Scholar 

  29. Tong Y, Liu Y, Dong L, Zhao D, Zhang J, Lu Y, Shen D, Fan X (2006) Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J Phys Chem B110:20263–20267

    Article  CAS  Google Scholar 

  30. Lin CH, Chang SJ, Hsueh TJ (2017) A WO3 nanoparticles NO gas sensor prepared by hot-wire CVD. IEEE Electron Device Lett 38:266–269

    Article  CAS  Google Scholar 

  31. Kim C-Y, Jung H, Choi H, Choi D (2016) Synthesis of one-dimensional SnO2 lines by using electrohydrodynamic jet printing for a NO gas sensor. J Korean Phys Soc 68:357–362

    Article  CAS  Google Scholar 

  32. Lin CY, Fang YY, Lin CW, Tunney JJ, Ho KC (2010) Fabrication of NOx gas sensors using In2O3–ZnO composite films. Sens Actuators B Chem 146:28–34

    Article  CAS  Google Scholar 

  33. Liu B, Liu X, Yuan Z, Jiang Y, Su Y, Ma J, Tai H (2019) A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens Actuators B Chem 295:86–92

    Article  CAS  Google Scholar 

  34. Zhang Z, Haq M, Wen Z, Ye Z, Zhu L (2018) Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe. Appl Surf Sci 434:891–897

    Article  CAS  Google Scholar 

  35. Soltabayev B, Er IK, Surel H, Coşkun A, Yildirim MA, Ateş A, Acar S (2019) Influence of Ni doping on the nitric oxide gas sensing properties of Zn1–xNixO thin films synthesized by silar method. Mater Res Express 6:086419

    Article  CAS  Google Scholar 

  36. Samanta C, Ghatak A, Raychaudhuri AK, Ghosh B (2019) ZnO/Si nanowires heterojunction array-based nitric oxide (NO) gas sensor with noise-limited detectivity approaching 10 ppb. Nanotechnology 30:305501

    Article  Google Scholar 

  37. Gupta SK, Joshi A, Manmeet K (2010) Development of gas sensors using ZnO nanostructures. J Chem Sci 122:57–62

    Article  CAS  Google Scholar 

  38. Singh G, Choudhary A, Haranath D, Joshi AG, Singh N, Singh S, Pasricha R (2012) ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon NY 50:385–394

    Article  CAS  Google Scholar 

  39. Jagadale SB, Patil VL, Vanalakar SA, Patil PS, Deshmukh HP (2018) Preparation, characterization of 1D ZnO nanorods and their gas sensing properties. Ceram Int 44:3333–3340

    Article  CAS  Google Scholar 

  40. Kaur M, Kailasaganapathi S, Ramgir N, Datta N, Kumar S, Debnath AK, Aswal DK, Gupta SK (2017) Gas dependent sensing mechanism in ZnO nanobelt sensor. Appl Surf Sci 394:258–266

    Article  CAS  Google Scholar 

  41. Kim W, Choi M, Yong K (2015) Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens Actuators B Chem 209:989–996

    Article  CAS  Google Scholar 

  42. Simanjuntak FM, Ohno T, Samukawa S (2019) Neutral oxygen beam treated ZnO-based resistive switching memory device. ACS Appl Electron Mater 1:18–24

    Article  CAS  Google Scholar 

  43. Yuan K, Yin X, Li J, Wu J, Wang Y, Huang F (2010) Preparation and DSC application of the size-tuned ZnO nanoarrays. J Alloys Compd 489:694–699

    Article  CAS  Google Scholar 

  44. Agarwal S, Rai P, Navarrete E, Llobet E, Güell F (2019) Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens Actuators B Chem 292:24–31

    Article  CAS  Google Scholar 

  45. Harale NS, Dalavi DS, Mali SS, Tarwal NL, Vanalakar SA, Rao VK, Hong CK, Kim JH, Patil PS (2018) Single-step hydrothermally grown nanosheet-assembled tungsten oxide thin films for sensitive and selective NO2 gas detection. J Mater Sci 53:6094–6105. https://doi.org/10.1007/s10853-017-1905-9

    Article  CAS  Google Scholar 

  46. Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4–11

    Google Scholar 

  47. Liu FT, Gao SF, Pei SK, Tseng SC, Liu CHJ (2009) ZnO nanorod gas sensor for NO2 detection. J Taiwan Inst Chem Eng 40:528–532

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Science and Technology, Taiwan, under projects MOST 105-2221-E-009-143-MY3, MOST-107-2633-E-009-003 and MOST 108-2218-E-009-002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hsiao-Wen Zan or Tseung-Yuen Tseng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Simanjuntak, F.M., Wu, YC. et al. Sensing performance of gas sensors fabricated from controllably grown ZnO-based nanorods on seed layers. J Mater Sci 55, 8850–8860 (2020). https://doi.org/10.1007/s10853-020-04659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04659-7

Navigation