Skip to main content
Log in

The influence of ZSM-5 structure on As(V) adsorption performance: pseudomorphic transformation and grafting of rare-earth Ce onto ZSM-5

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZSM-5 has been regarded as one of the potential materials for separating substances from the mixture; however, their micropore channel is not favorable to load new active sites and adsorbate species. Herein, the pseudomorphic transformation method was used to convert high-aluminum-content micropore ZSM-5 into mesoporous structure (ZSM-5K). The samples of ZSM-5 and ZSM-5K were modified by Ce2(SO4)3 via the same impregnation route, and the obtained samples were used to adsorb As(V) from aqueous solution. The As(V) removal percentage and the X-ray diffraction data indicate that Ce2(SO4)3 was the effective adsorption site due to the high affinity between As(V) species and Ce. The N2 adsorption–desorption isotherms show that the linear connection between As(V) removal and BET surface of adsorbents was been obtained. The transmission electron microscopy results showed that mesoporous structure was more favorable to disperse the adsorption sites. In addition, the As(V) equilibrium adsorption data were fitted well by the Langmuir isotherm, and the maximum adsorption capacity was found as 31.63 mg/g, which was larger than that of the conventional alumina, carbon, iron oxide, etc. The adsorption kinetics under different initial concentration obeyed the pseudo-second-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Babel S, Kurniawan TA (2003) Low-cost adsorbent for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  Google Scholar 

  2. Fiyadh SS, AlSaadi MA, Jaafar WZ, AlOmar MK, Fayaed SS, Mohd NS, Hin LS, El-Shafie A (2019) Review on heavy metal adsorption processes by carbon nanotubes. J Clean Prod 230:783–793

    Article  CAS  Google Scholar 

  3. Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazardous Mater 142:1–53

    Article  CAS  Google Scholar 

  4. Liao C, Shen H, Lin T, Chen SC, Chen C, Hsu L, Chen C (2008) Arsenic cancer risk posed to human health from tilapia consumption in Taiwan. Ecotoxicol Environ Saf 70:27–37

    Article  CAS  Google Scholar 

  5. Gomez-Caminero A, Howe P, Hughes M, Kenyon E, Lewis DR, Moore M, Ng J, Aito A, Becking G (2001) Arsenic and arsenic compounds, environmental health criteria 224. World Health Organization, Geneva

    Google Scholar 

  6. WHO (2006) Guidelines for drinking-water quality: first addendum to volume 1, recommendations. World Health Organization, vol 1

  7. Xu X, Gao BY, Jin B, Yue QY (2016) Removal of anionic pollutants from liquids by biomass materials: a review. J Mol Liquids 216:565–595

    Article  CAS  Google Scholar 

  8. Lata S, Samadder SR (2016) Removal of arsenic from water using nano adsorbents and challenges: a review. J Environ Manag 166:387–406

    Article  CAS  Google Scholar 

  9. Mohamed C, Mohamed Z, Gabriela C, Fouad S (2011) Application of low-cost adsorbents for arsenic removal: a review. J Environ Chem Ecotoxicol 4:91–102

    Google Scholar 

  10. Chutia P, Kato S, Kojima T, Satokawa S (2009) Arsenic adsorption from aqueous solution on synthetic zeolites. J Hazard Mater 162:440–447

    Article  CAS  Google Scholar 

  11. Shevade S, Ford RG (2004) Use of synthetic zeolites for arsenate removal from pollutant water. Water Res 38:3197–3204

    Article  CAS  Google Scholar 

  12. Peng C, Liu Z, Yonezawa Y, Yanaba Y, Katada N, Murayama I, Segoshi S, Okuboa T, Wakihara T (2019) Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst. Microporous Mesoporous Mater 277:197–202

    Article  CAS  Google Scholar 

  13. Yang T, Han C, Liu H, Yang L, Liu D, Tang J, Luo Y (2019) Synthesis of Na-X zeolite from low aluminum coal fly ash: characterization and high efficient As(V) removal. Adv Powder Technol 30:199–206

    Article  CAS  Google Scholar 

  14. Xu Y-H, Nakajima T, Ohki A (2002) Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite. J Hazard Mater B 92:275–287

    Article  CAS  Google Scholar 

  15. Stanić T, Daković A, Živanović A, Tomašević-Čanović M, Dondur V, Milićević S (2009) Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff. Environ Chem Lett 7:161–166

    Article  CAS  Google Scholar 

  16. Han C, Yang T, Liu H, Yang L, Luo Y (2019) Characterizations and mechanisms for synthesis of chitosan-coated Na–X zeolite from fly ash and As(V) adsorption study. Environ Sci Pollut Res 26:10106–10116

    Article  CAS  Google Scholar 

  17. Jung C, Heo JY, Han JH, Her N, Lee S-J, Oh J, Ryu J, Yoon Y (2013) Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep Purif Technol 106:63–71

    Article  CAS  Google Scholar 

  18. Biswas BK, Inoue K, Ghimire KN, Kawakita H, Ohto K, Harada H (2008) Effective removal of arsenic with lanthanum(III) and cerium(III)-loaded orange waste gels. Sep Sci Technol 43:2144–2165

    Article  CAS  Google Scholar 

  19. Li ZJ, Denga S, Yua G, Huang J, Lima VC (2010) As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: behavior and mechanism. Chem Eng J 161:106–113

    Article  CAS  Google Scholar 

  20. Yu Y, Zhang CY, Yang LM, Chen JP (2017) Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: material development and study of performance and mechanisms. Chem Eng J 315:630–638

    Article  CAS  Google Scholar 

  21. Mishra PK, Gahlyan P, Kumar R, Rai PK (2018) Aero-gel based cerium doped iron oxide solid solution for ultrafast removal of arsenic. ACS Sustain Chem Eng 6(8):10668–10678

    Article  CAS  Google Scholar 

  22. Denga H, Yub XL (2012) Adsorption of fluoride, arsenate and phosphate in aqueous solution by cerium impregnated fibrous protein. Chem Eng J 184:205–212

    Article  CAS  Google Scholar 

  23. Zhanga LF, Zhua TY, Liu X, Zhang WQ (2016) Simultaneous oxidation and adsorption of As(III) from water by cerium modified chitosan ultrafine nanobiosorbent. J Hazard Mater 308:1–10

    Article  CAS  Google Scholar 

  24. Verboekend D, Vile G, Perez-Ramires J (2012) Hierarchical Y and USY zeolites designed by post-synthetic strategies. Adv Funct Mater 22:916–928

    Article  CAS  Google Scholar 

  25. He SF, Han CY, Wang H, Zhu WJ, He SY, He DD, Luo YM (2015) Uptake of arsenic(V) using aluminum functionalized highly-ordered mesoporous SBA-15 (Alx-SBA-15) as an effective adsorbent. J Chem Eng Data 60:1300–1310

    Article  CAS  Google Scholar 

  26. Frantz TS, Ruiz WA, Rosa CA, Mortola VB (2016) Synthesis of ZSM-5 with high sodium content for CO2 adsorption. Microporous Mesoporous Mater 222:209–217

    Article  CAS  Google Scholar 

  27. Ogura M, Shinomiya S, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl Catal A 219:33–43

    Article  CAS  Google Scholar 

  28. Ogura M, Shinomiya S, Tateno J, Nara Y, Kikuchi E, Matsukata M (2000) Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution. Chem Lett 29:882–883

    Article  Google Scholar 

  29. Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122:7116–7117

    Article  CAS  Google Scholar 

  30. Goodarzia F, Herrerob IP, Kalantzopoulosb GN, Svelleb S, Lazzarinib A, Beatoc P, Olsbyeb U, Kegnasa S (2020) Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion. Microporous Mesoporous Mater 292:109730

    Article  CAS  Google Scholar 

  31. Chen H, Yang M, Shang W, Tong Y, Liu B, Han X, Zhang J, Hao Q, Sun M, Ma X (2018) Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Ind Eng Chem Res 57:10956–10966

    Article  CAS  Google Scholar 

  32. Einicke W-D, Enke D, Dvoyashkin M, Valiullin R, Gläser R (2013) The mechanism of pseudomorphic transformation of spherical silica gel into MCM-41 studied by PFG NMR diffusometry. Materials 6:3688–3709

    Article  CAS  Google Scholar 

  33. Robin C, Thomas C, Sander VD, Corine GR (2010) Pseudomorphic synthesis of mesoporous zeolite Y crystals. Chem Commun 46:7840–7842

    Article  CAS  Google Scholar 

  34. Diao Z, Wang L, Zhang X, Liu G (2015) Catalytic cracking of supercritical n-dodecane over meso-HZSM-5@Al-MCM-41 zeolites. Chem Eng Sci 135:452–460

    Article  CAS  Google Scholar 

  35. Peron DV, Zholobenko VL, de Melo JHS, Capron M, Nuns N, de Souza MO, Feris LA, Marcilio NR, Ordomsky VV, Khodakov AY (2019) External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source. Microporous Mesoporous Mater 286:57–64

    Article  CAS  Google Scholar 

  36. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas, solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  37. Han C, Pu H, Yu H, Li H, Deng L, Huang S, Luo Y (2013) Synthesis and characterization of mesoporous alumina and their performances for removing arsenic(V). Chem Eng J 217:1–9

    Article  CAS  Google Scholar 

  38. Hou X, Zhu W, Tian Y, Qiu Y, Diao Z, Feng F, Zhang X, Liu G (2019) Superiority of ZrO2 surface enrichment on ZSM-5 zeolites in n-pentane catalytic cracking to produce light olefins. Microporous Mesoporous Mater 276:41–51

    Article  CAS  Google Scholar 

  39. Chen B, Zhao H, Chen S, Long F, Huang B, Yang B, Pan X (2019) A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater. Chem Eng J 356:69–80

    Article  CAS  Google Scholar 

  40. Ali I, Al-Othman ZA, Alwarthan A, Asim M, Khan T (2014) Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ Sci Pollut Res 21:3218–3229

    Article  CAS  Google Scholar 

  41. Zhu X, Li B, Yang J, Li Y, Zhao W, Shi J, Gu J (2015) Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS Appl Mater Interfaces 7:223–231

    Article  CAS  Google Scholar 

  42. Yang Q, Wang Y, Wang J, Liu F, Hu N, Pei H, Yang W, Li Z, Suo Y, Wang J (2018) High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67). Food Chem 254:241–248

    Article  CAS  Google Scholar 

  43. Nekhunguni PM, Tavengwa NT, Tutu H (2017) Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite. J Environ Manag 197:550–558

    Article  CAS  Google Scholar 

  44. Wasay SA, Tokunaga S, Park SW (1996) Removal of hazardous anions from aqueous solutions by La(III) and Y(III)-impregnated alumina. Sep Sci Technol 31:1501–1514

    Article  CAS  Google Scholar 

  45. Raichur AM, Penvekar V (2002) Removal of As(V) by adsorption onto mixed rare earth oxides. Sep Sci Technol 37:1095–1108

    Article  CAS  Google Scholar 

  46. Chuang L, Fan M, Xu M, Brown RC, Sung S, Saha B, Huang CP (2005) Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere 61:478–483

    Article  CAS  Google Scholar 

  47. Lin TF, Wu JK (2001) Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res 35:2049–2057

    Article  CAS  Google Scholar 

  48. Wang R, Xu H, Zhang K, Wei S, Wu D (2019) High-quality Al@Fe-MOF prepared using Fe-MOF as a micro-reactor to improve adsorption performance for selenite. J Hazard Mater 364:272–280

    Article  CAS  Google Scholar 

  49. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

    Article  CAS  Google Scholar 

  50. Zhao DL, Yang X, Chen CL, Wang XK (2013) Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes-TiO2. J Colloid Interface Sci 398:234–239

    Article  CAS  Google Scholar 

  51. Lv Z, Yang S, Zhu H, Chen L, Alharbi NS, Wakeel M, Wahid A, Chen C (2018) Highly efficient removal of As(V) by using NiAl layered double oxide composites. Appl Surf Sci 448:599–608

    Article  CAS  Google Scholar 

  52. Ma QY, Wang LJ (2015) Adsorption of reactive blue 21 onto functionalized cellulose under ultrasonic pretreatment: kinetic and equilibrium study. J Taiwan Inst Chem Eng 50:229–235

    Article  CAS  Google Scholar 

  53. Ma F, Qu RJ, Sun CM, Wang CH, Ji CN, Zhang Y, Yin P (2009) Adsorption behaviors of Hg(II) on chitosan functionalized by amino-terminated hyperbranched polyamidoamine polymers. J Hazard Mater 172:792–801

    Article  CAS  Google Scholar 

  54. Kililç M, Yazilcil H, Solak M (2009) A comprehensive study on removal and recovery of copper (II) from aqueous solutions by NaOH-pretreated marrubium globosum ssp. globosum leaves powder: potential for utilizing the copper (II) condensed desorption solutions in agricultural applications. Bioresource Technol 100:2130–2137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work was supported by National Natural Science Foundation of China (Grant Nos. 21767016, 21507051, and U1402233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiyun Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, X., Zhou, C., Han, C. et al. The influence of ZSM-5 structure on As(V) adsorption performance: pseudomorphic transformation and grafting of rare-earth Ce onto ZSM-5. J Mater Sci 55, 8145–8154 (2020). https://doi.org/10.1007/s10853-020-04591-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04591-w

Navigation