Skip to main content
Log in

Noble and Base-Metal Nanoparticles Supported on Mesoporous Metal Oxides: Efficient Catalysts for the Selective Hydrogenation of Levulinic Acid to γ-Valerolactone

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The selective hydrogenation of levulinic acid, LA to γ-valerolactone, GVL in water and solvent-free systems using mesoporous TiO2, NiO and MnO2 metal oxides supported noble and base-metal nanoparticles was investigated. BET results showed that all the synthetized materials were mesoporous with type IV isotherms and type I hysteresis. The p-XRD peaks observed in the low angle region confirm the successful formation of the meso-structured materials, whereas the wide-angle diffraction patterns show that the crystalline structure of the pure nanocatalysts is maintained upon deposition of the metal. TPR results showed that the reduced supported nanocatalysts consist of metallic Ru, Pd, Cu and Cr, and the average particle sizes obtained from HRTEM were found to be of 2 to 6 nm in diameter. The as-synthetized reusable nanocatalysts were revealed to be highly efficient for the conversion of LA to GVL. The best performance with complete conversion of LA and > 95% GVL selectivity was obtained from the TiO2 and MnO2-based nanocatalysts when water was used as a solvent. The order of reactivity of the supported metal nanoparticles was established as: Pd ≈ Ru > Cu > Cr. With an activity, TOF of up to 277273 h−1/mol, the low cost copper-based nanocatalysts could be an alternative to the high cost noble metal-based catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2: a
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chow LCH (2011) China’s energy future: a framing comment. Eurasian Geogr Econ 52(4):523–528

    Article  Google Scholar 

  2. Hassan H, Lim JK, Hameed BH (2016) Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresour Technol 221:645–655

    Article  CAS  PubMed  Google Scholar 

  3. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327(5969):1110–1114

    Article  CAS  PubMed  Google Scholar 

  4. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558

    Article  CAS  PubMed  Google Scholar 

  5. Geilen F, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem 122(32):5642–5646

    Article  Google Scholar 

  6. Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16(2):516–547

    Article  CAS  Google Scholar 

  7. Li W, Xie J-H, Lin H, Zhou Q-L (2012) Highly efficient hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by iridium pincer complexes. Green Chem. 14(9):2388–2390

    Article  CAS  Google Scholar 

  8. Luo W, Sankar M, Beale AM, He Q, Kiely CJ, Bruijnincx PCA et al (2015) High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nat Commun 6:6540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biddy MJ, Davis R, Humbird D, Tao L, Dowe N, Guarnieri MT et al (2016) The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustain Chem Eng. 4(6):3196–3211

    Article  CAS  Google Scholar 

  10. Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng. 1:79–100

    Article  CAS  PubMed  Google Scholar 

  11. Zhong H, Li Q, Liu J, Yao G, Wang J, Zeng X et al (2017) New method for highly efficient conversion of biomass-derived levulinic acid to γ-valerolactone in water without precious metal catalysts. ACS Sustain Chem Eng. 5(8):6517–6523

    Article  CAS  Google Scholar 

  12. Wang S, Huang H, Dorcet V, Roisnel T, Bruneau C, Fischmeister C (2017) Efficient iridium catalysts for base-free hydrogenation of levulinic acid. Organometallics. 36(16):3152–3162

    Article  CAS  Google Scholar 

  13. Pileidis FD, Titirici M (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem. 9(6):562–582

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Chen J, Guo Y, Chen L (2015) Effective upgrade of levulinic acid into γ-valerolactone over an inexpensive and magnetic catalyst derived from hydrotalcite precursor. ACS Sustain Chem Eng. 3(8):1708–1714

    Article  CAS  Google Scholar 

  15. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 12(4):539–554

    Article  CAS  Google Scholar 

  16. Omoruyi U, Page S, Hallett J, Miller PW (2016) Homogeneous catalyzed reactions of levulinic acid: to γ-Valerolactone and beyond. ChemSusChem. 9(16):2037–2047

    Article  CAS  PubMed  Google Scholar 

  17. Xie C, Song J, Zhou B, Hu J, Zhang Z, Zhang P et al (2016) Porous hafnium phosphonate: novel heterogeneous catalyst for conversion of levulinic acid and esters into γ-valerolactone. ACS Sustain Chem Eng 4(11):6231–6236

    Article  CAS  Google Scholar 

  18. Piskun AS, de Haan JE, Wilbers E, van de Bovenkamp HH, Tang Z, Heeres HJ (2016) Hydrogenation of levulinic acid to γ-valerolactone in water using millimeter sized supported Ru catalysts in a packed bed reactor. Acs Sustain Chem Eng. 4(6):2939–2950

    Article  CAS  Google Scholar 

  19. Wright WRH, Palkovits R (2012) Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone. ChemSusChem. 5(9):1657–1667

    Article  CAS  PubMed  Google Scholar 

  20. Tukacs JM, Király D, Strádi A, Novodarszki G, Eke Z, Dibó G et al (2012) Efficient catalytic hydrogenation of levulinic acid: a key step in biomass conversion. Green Chem. 14(7):2057–2065

    Article  CAS  Google Scholar 

  21. Delhomme C, Schaper L-A, Zhang-Preße M, Raudaschl-Sieber G, Weuster-Botz D, Kühn FE (2013) Catalytic hydrogenation of levulinic acid in aqueous phase. J Organomet Chem 724:297–299

    Article  CAS  Google Scholar 

  22. Shimizu K, Kanno S, Kon K (2014) Hydrogenation of levulinic acid to γ-valerolactone by Ni and MoO x co-loaded carbon catalysts. Green Chem 16(8):3899–3903

    Article  CAS  Google Scholar 

  23. Nemanashi M, Noh J-H, Meijboom R (2018) Hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by mesoporous supported dendrimer-derived Ru and Pt catalysts: an alternative method for the production of renewable biofuels. Appl Catal A Gen 550:77–89

    Article  CAS  Google Scholar 

  24. Deng L, Zhao Y, Li J, Fu Y, Liao B, Guo Q (2010) Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts. ChemSusChem. 3(10):1172–1175

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Jaenicke S, Chuah G-K (2014) Zirconium-beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. RSC Adv. 4(26):13481–13489

    Article  CAS  Google Scholar 

  26. Fábos V, Mika LT, Horváth IT (2014) Selective conversion of levulinic and formic acids to γ-valerolactone with the shvo catalyst. Organometallics. 33(1):181–187

    Article  CAS  Google Scholar 

  27. Joo F, Tóth Z, Beck MT (1977) Homogeneous hydrogenations in aqueous solutions catalyzed by transition metal phosphine complexes. Inorg Chim Acta 25:L61–L62

    Article  CAS  Google Scholar 

  28. Manzer LE (2004) Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Appl Catal A Gen 272(1–2):249–256

    Article  CAS  Google Scholar 

  29. Ruppert AM, Grams J, Jędrzejczyk M, Matras-Michalska J, Keller N, Ostojska K et al (2015) Titania-supported catalysts for levulinic acid hydrogenation: influence of support and its impact on γ-valerolactone yield. ChemSusChem. 8(9):1538–1547

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Gao G, Zhang X, Li F (2014) Facile fabrication of composition-tuned Ru–Ni bimetallics in ordered mesoporous carbon for levulinic acid hydrogenation. ACS Catal. 4(5):1419–1425

    Article  CAS  Google Scholar 

  31. Al-Shaal MG, Wright WRH, Palkovits R (2012) Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions. Green Chem 14(5):1260–1263

    Article  CAS  Google Scholar 

  32. Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15(3):584–595

    Article  CAS  Google Scholar 

  33. Yan K, Liao J, Wu X, Xie X (2013) A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid. Rsc Adv 3(12):3853–3856

    Article  CAS  Google Scholar 

  34. Li Z, Zuo M, Jiang Y, Tang X, Zeng X, Sun Y et al (2016) Stable and efficient CuCr catalyst for the solvent-free hydrogenation of biomass derived ethyl levulinate to γ-valerolactone as potential biofuel candidate. Fuel 175:232–239

    Article  CAS  Google Scholar 

  35. Zhou N, Polavarapu L, Wang Q, Xu Q-H (2015) Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency. ACS Appl Mater Interfaces 7(8):4844–4850

    Article  CAS  PubMed  Google Scholar 

  36. Nawaz F, Xie Y, Cao H, Xiao J, Zhang X, Li M et al (2015) Catalytic ozonation of 4-nitrophenol over an mesoporous α-MnO2 with resistance to leaching. Catal Today 258:595–601

    Article  CAS  Google Scholar 

  37. Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42(9):4036–4053

    Article  CAS  PubMed  Google Scholar 

  38. Poyraz AS, Kuo C-H, Biswas S, King’ondu CK, Suib SL (2013) A general approach to crystalline and monomodal pore size mesoporous materials. Nat Commun 4:2952

    Article  CAS  PubMed  Google Scholar 

  39. Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41(14):4909–4927

    Article  CAS  PubMed  Google Scholar 

  40. Mogudi BM, Ncube P, Meijboom R (2016) Catalytic activity of mesoporous cobalt oxides with controlled porosity and crystallite sizes: evaluation using the reduction of 4-nitrophenol. Appl Catal B Environ 198:74–82

    Article  CAS  Google Scholar 

  41. Kim M, Phan VN, Lee K (2012) Exploiting nanoparticles as precursors for novel nanostructure designs and properties. CrystEngComm 14(22):7535–7548

    Article  CAS  Google Scholar 

  42. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chemie Int Ed 44(48):7852–7872

    Article  CAS  Google Scholar 

  43. Grasselli RK, Sleight AW (1991) Structure-activity and selectivity relationships in heterogeneous catalysis, vol 67. Elsevier, Amsterdam

    Google Scholar 

  44. Stevens JG, Bourne RA, Twigg MV, Poliakoff M (2010) Real-time product switching using a twin catalyst system for the hydrogenation of furfural in supercritical CO2. Angew Chem 122(47):9040–9043

    Article  Google Scholar 

  45. Galletti AMR, Antonetti C, De Luise V, Martinelli M (2012) A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem. 14(3):688–694

    Article  CAS  Google Scholar 

  46. Yan Z, Lin L, Liu S (2009) Synthesis of γ-valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst. Energy Fuels 23(8):3853–3858

    Article  CAS  Google Scholar 

  47. Protsenko II, Nikoshvili LZ, Matveeva VG, Sulman EM, Rebrov E (2016) Selective hydrogenation of levulinic acid to gamma-valerolactone using polymer-based ru-containing catalysts. Chem Eng Trans 52:679–684

    Google Scholar 

  48. Selva M, Gottardo M, Perosa A (2012) Upgrade of biomass-derived levulinic acid via Ru/C-catalyzed hydrogenation to γ-valerolactone in aqueous–organic–ionic liquids multiphase systems. ACS Sustain Chem Eng 1(1):180–189

    Article  CAS  Google Scholar 

  49. Lippits MJ, Nieuwenhuys BE (2010) Direct conversion of ethanol into ethylene oxide on copper and silver nanoparticles: effect of addition of CeOx and Li2O. Catal Today 154(1–2):127–132

    Article  CAS  Google Scholar 

  50. Ndolomingo MJ, Meijboom R (2017) Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles. Appl Surf Sci 398:19–32

    Article  CAS  Google Scholar 

  51. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802

    Article  Google Scholar 

  52. Crystal-Impact. Match! 2013, v2

  53. Rasband WS (2013) ImageJ 1.47 v. US Natl Institutes Heal Bethesda, Maryland, USA. http//imagej nih gov/ij/. Accessed 21st Oct 2015

  54. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem Mater. 13(10):3169–3183

    Article  CAS  Google Scholar 

  55. Thirupathi B, Smirniotis PG (2011) Co-doping a metal (Cr, Fe Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Appl Catal B Environ 110:195–206

    Article  CAS  Google Scholar 

  56. Wu Z, Jiang B, Liu Y (2008) Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl Catal B Environ. 79(4):347–355

    Article  CAS  Google Scholar 

  57. Nilius N, Freund H-J (2015) Activating nonreducible oxides via doping. Acc Chem Res. 48(5):1532–1539

    Article  CAS  PubMed  Google Scholar 

  58. Lin R, Liu W-P, Zhong Y-J, Luo M-F (2001) CO oxidation activity and TPR characterization of Ag-Mn complex oxide catalysts. React Kinet Catal Lett. 72(2):289–295

    Article  CAS  Google Scholar 

  59. Pozan GS (2012) Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion. J Hazard Mater 221:124–130

    Article  CAS  PubMed  Google Scholar 

  60. Kapteijn F, Vanlangeveld AD, Moulijn JA, Andreini A, Vuurman MA, Turek AM et al (1994) Alumina-supported manganese oxide catalysts: I. Characterization: effect of precursor and loading. J Catal. 150(1):94–104

    Article  CAS  Google Scholar 

  61. Bingwa N, Ndolomingo MJ, Noh J-H, Antonels N, Haumann M, Meijboom R. Synergistic effect of mesoporous transition metal oxides and Pt nanoparticles in aerobic oxidation of ethanol and ionic liquid induced selectivity. Unpublished work

  62. Michel C, Zaffran J, Ruppert AM, Matras-Michalska J, Jędrzejczyk M, Grams J et al (2014) Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone. Chem Commun. 50(83):12450–12453

    Article  CAS  Google Scholar 

  63. Tan J, Cui J, Deng T, Cui X, Ding G, Zhu Y et al (2015) Water-promoted hydrogenation of levulinic acid to γ-valerolactone on supported ruthenium catalyst. ChemCatChem. 7(3):508–512

    Article  CAS  Google Scholar 

  64. Kumar VV, Naresh G, Deepa S, Bhavani PG, Nagaraju M, Sudhakar M et al (2017) Influence of W on the reduction behaviour and Brønsted acidity of Ni/TiO2 catalyst in the hydrogenation of levulinic acid to valeric acid: pyridine adsorbed DRIFTS study. Appl Catal A Gen 531:169–176

    Article  CAS  Google Scholar 

  65. Kumar VV, Naresh G, Sudhakar M, Tardio J, Bhargava SK, Venugopal A (2015) Role of Brønsted and Lewis acid sites on Ni/TiO2 catalyst for vapour phase hydrogenation of levulinic acid: kinetic and mechanistic study. Appl Catal A Gen 505:217–223

    Article  CAS  Google Scholar 

  66. Michel C, Gallezot P (2015) Why is ruthenium an efficient catalyst for the aqueous-phase hydrogenation of biosourced carbonyl compounds? ACS Catal 5:4130

    Article  CAS  Google Scholar 

  67. Upare PP, Lee J-M, Hwang DW, Halligudi SB, Hwang YK, Chang J-S (2011) Selective hydrogenation of levulinic acid to γ-valerolactone over carbon-supported noble metal catalysts. J Ind Eng Chem 17(2):287–292

    Article  CAS  Google Scholar 

  68. Evangelista V, Acosta B, Miridonov S, Smolentseva E, Fuentes S, Simakov A (2015) Highly active Au-CeO2@ ZrO2 yolk–shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Appl Catal B Environ 166:518–528

    Article  CAS  Google Scholar 

  69. Amenuvor G, Makhubela BCE, Darkwa J (2016) Efficient solvent-free hydrogenation of levulinic acid to γ-valerolactone by pyrazolylphosphite and pyrazolylphosphinite ruthenium (II) complexes. ACS Sustain Chem Eng 4(11):6010–6018

    Article  CAS  Google Scholar 

  70. Fu J, Sheng D, Lu X (2015) Hydrogenation of levulinic acid over nickel catalysts supported on aluminum oxide to prepare γ-valerolactone. Catalysts. 6(1):6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on the research supported in the part by the National Research Foundation of South Africa (Grant specific unique reference number (UID 85386)). We would like also to thank the University of Johannesburg and Sasol R&D for funding, and Shimadzu South Africa, for the use of their equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinout Meijboom.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndolomingo, M.J., Meijboom, R. Noble and Base-Metal Nanoparticles Supported on Mesoporous Metal Oxides: Efficient Catalysts for the Selective Hydrogenation of Levulinic Acid to γ-Valerolactone. Catal Lett 149, 2807–2822 (2019). https://doi.org/10.1007/s10562-019-02790-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02790-y

Keywords

Navigation