Skip to main content

Advertisement

Log in

High-strength ultrafine-grained titanium 99.99 manufactured by large strain plastic working

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this research, high-purity titanium (hp-Ti, 99.99 wt%) was subjected to a large strain via a cold plastic working process. To accumulate a relatively large plastic deformation in the workpiece, the hydrostatic extrusion (HE) technique was applied. The initial rod with a diameter of ∅50 mm was subjected to a multi-pass extrusion process, and, this way, rods with a diameter of ∅8 mm and ∅7 mm were obtained. In this paper, the results of an investigation of the structure and mechanical properties of the hp-Ti are presented. The size and shape of the grains of the as-received and extruded samples were examined, and an effective way of refining grain and strengthening hp-Ti using plastic working was demonstrated. Thanks to the process applied, an ultrafine-grained structure was obtained. In the transverse section, the average grain size determined by transmission electron microscopy was 117 nm on average. As a result of the extrusion, a significant increase in yield stress, tensile strength and microhardness was observed. Moreover, in this paper the overall potential of the HE technique was demonstrated. The results of this work confirm that it is possible to manufacture high-strength, ultrafine-grained high-purity titanium via cold plastic working.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Purcek G, Yapici GG, Karaman I, Maier HJ (2011) Effect of commercial purity levels on the mechanical properties of ultrafine-grained titanium. Mater Sci Eng A 528:2303–2308

    Article  Google Scholar 

  2. Mishnaevsky L Jr, Levashov E, Valiev RZ, Segurado J, Sabirov I, Enikeev N, Prokoshkin S, Solov’yov AV, Korotitskiy A, Gutmanas E, Gotman I, Rabkin E, Psakh’e S, Dluhos L, Seefeldt M, Smolin A (2014) Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng R 81:1–19

    Article  Google Scholar 

  3. Latysh V, Krallics G, Alexandrov I, Fodor A (2006) Application of bulk nanostructured materials in medicine. Curr Appl Phys 6:262–266

    Article  Google Scholar 

  4. Elias CN, Meyers MA, Valiev RZ, Monteiro SN (2013) Ultrafine grained titanium for biomedical applications: an overview of performance. J Mater Res Technol 2(4):340–350

    Article  CAS  Google Scholar 

  5. Valiev RZ, Semenova IP, Latysh VV, Rack H, Lowe TC, Petruzelka J, Dluhos L, Hrusak D, Sochova J (2008) Nanostructured Titanium for biomedical applications. Adv Eng Mater 10(8):1–4

    Article  Google Scholar 

  6. Bouvier S, Benmhenni N, Tirry W, Gregory F, Nixon ME, Cazacu O, Rabet L (2012) Hardening in relation with microstructure evolution of high purity-titanium deformed under monotonic and cyclic simple shear loadings at room temperature. Mater Sci Eng A 535:12–21

    Article  CAS  Google Scholar 

  7. Ghafari-Goushehn S, Nedjad SH, Khalil-Allafi J (2015) Tensile properties and interfacial bonding of multi-layered, high-purity titanium strips fabricated by ARB process. J Mech Behav Biomed Mater 51:147–153

    Article  Google Scholar 

  8. Mahmoodian R, Syahira N, Annuar M, Faraji G, Dayana Bahar N, Abd Razak B, Sparham M (2019) Severe plastic deformation of commercial pure titanium (CP-Ti) for biomedical applications: a brief review. Mater Nanomed Bioeng. https://doi.org/10.1007/s11837-017-2672-4

    Article  Google Scholar 

  9. Figueiredo RB, de Barbosa ERC, Zhao X, Yang X, Cetlin PR, Langdon TG (2014) Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing. Mater Sci Eng A 619:312–318

    Article  CAS  Google Scholar 

  10. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  CAS  Google Scholar 

  11. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a health of challenging science. Acta Mater 61:782–817

    Article  CAS  Google Scholar 

  12. Topolski K, Garbacz H (2019) Manufacturing of nanostructured titanium Grade2 using caliber rolling. Mater Sci Eng A 739:277–288

    Article  CAS  Google Scholar 

  13. Dobatkin SV, Arsenkin AM, Popov MA, Kishchenko AN (2005) Production of bulk metallic nanoand submicrocrystalline materials by the method of severe plastic deformation. Metal Sci Heat Treat 47(5–6):188–192

    Article  CAS  Google Scholar 

  14. Shaat M (2018) Effects of processing conditions on microstructure and mechanical properties of equal-channelangular-pressed titanium. Mater Sci Technol 34(10):1149–1167

    Article  CAS  Google Scholar 

  15. Shirooyeh M, Jie S, Langdon TG (2014) Microhardness evolution and mechanical characteristics of commercial purity titanium processed by high-pressure torsion. Mater Sci Eng A 614:223–231

    Article  CAS  Google Scholar 

  16. Zherebtsov SV, Dyakonov GS, Salem AA, Sokolenko VI, Salishchev GA, Semiatin SL (2013) Formation of nanostructures in commercial-purity titanium via cryorolling. Acta Mater 61:1167–1178

    Article  CAS  Google Scholar 

  17. Fattah-alhosseini A, Ansari AR, Mazaheri Y, Karimi M, Haghshenas M (2017) An Investigation of mechanical properties in accumulative roll Bondem nano-grained pure titanium. Mater Sci Eng A 688:218–224

    Article  CAS  Google Scholar 

  18. Milner JL, Abu-Farha F, Bunget C, Kurfess T, Hammond VH (2013) Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding. Mater Sci Eng A 561:109–117

    Article  CAS  Google Scholar 

  19. Karimi M, Toroghinejad MR, Dutkiewicz J (2016) Nanostructure formation during accumulative roll bonding of commercial purity titanium. Mater Charact 122:98–103

    Article  CAS  Google Scholar 

  20. Topolski K, Pachla W, Garbacz H (2013) Progress in hydrostatic extrusion of titanium. J Mater Sci 48:4543–4548. https://doi.org/10.1007/s10853-012-7086-7

    Article  CAS  Google Scholar 

  21. Pachla W, Kulczyk M, Sus-Ryszkowska M, Mazur A, Kurzydlowski KJ (2008) Nanocrystalline titanium produced by hydrostatic extrusion. J Mater Process Technol 205:173–182

    Article  CAS  Google Scholar 

  22. Lewandowska M, Kurzydlowski KJ (2008) Recent development in grain refinement by hydrostatic extrusion. J Mater Sci 43:7299–7306. https://doi.org/10.1007/s10853-008-2810-z

    Article  CAS  Google Scholar 

  23. Pachla W, Skiba J, Kulczyk M, Przybysz S, Przybysz M, Wróblewska M, Diduszko R, Stępniak R, Bajorek J, Radomski M, Fąfara W (2014) Nanostructurization of 316L type austenitic stainless steels by hydrostatic extrusion. Mater Sci Eng A 615:116–127

    Article  CAS  Google Scholar 

  24. Pachla W, Kulczyk M, Smalc-Koziorowska J, Wróblewska M, Skiba J, Przybysz S, Przybysz M (2017) Mechanical properties and microstructure of ultrafine grained commercial purity aluminium prepared by cryo-hydrostatic extrusion. Mater Sci Eng A 695:178–192

    Article  CAS  Google Scholar 

  25. Podolskiy AV, Mangler C, Schafler E, Tabachnikova ED, Zehetbauer MJ (2013) Microstructure and mechanical properties of high purity nanostructured titanium processed by high pressure torsion at temperatures 300 and 77 K. J Mater Sci 48:4689–4697. https://doi.org/10.1007/s10853-013-7276-y

    Article  CAS  Google Scholar 

  26. Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Effect of strain path in high-pressure torsion process on hardening in commercial purity titanium. Mater Trans 49(1):47–53

    Article  CAS  Google Scholar 

  27. Wooon JW, Park KT, Lee CS (2015) Anisotropic yielding behavior of rolling textured high purity titanium. Mater Sci Eng A 637:215–221

    Article  Google Scholar 

  28. Shi M, Takayama Y, MA C, Watanabe H, Inoue H (2012) Microstructure and texture evolution in titanium subjected to friction roll surface processing and subsequent annealing. Trans Nonferr Metals Soc China 22:2616–2627

    Article  CAS  Google Scholar 

  29. Topolski K, Garbacz H, Pachla W, Kurzydlowski KJ (2010) Surface modification of titanium subjected to hydrostatic extrusion. Inżynieria Materiałowa Nr 3:336–339

    Google Scholar 

  30. Wejrzanowski T, Spychalski WL, Rożniatowski K, Kurzydłowski KJ (2008) Image based analysis of complex microstructures of engineering materials. Int J Appl Math Comput Sci 18(1):33–39

    Article  Google Scholar 

  31. Krallics G, Gubicza J, Bezi Z, Barkai I (2014) Manufacturing of ultrafine-grained titanium by caliber rolling in the laboratory and in industry. J Mater Process Technol 214:1307–1315

    Article  CAS  Google Scholar 

  32. Li Z, Liming F, Bin F, Shan A (2012) Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling. Mater Sci Eng A 558:309–318

    Article  CAS  Google Scholar 

  33. Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng A 243:231–236

    Article  Google Scholar 

  34. Elias CN, Fernandes DJ, Resende CRS, Roestel J (2015) Mechanical properties, surface morphology and stability of a modified commercially pure high strength titanium alloy for dental implants. Dent Mater 31:e1–e13

    Article  CAS  Google Scholar 

  35. Topolski K, Garbacz H, Pachla W, Kurzydlowski KJ (2010) Bulk nanostructured titanium fabricated by hydrostatic extrusion. Phys Status Solidi C 7(5):1391–1394

    Article  CAS  Google Scholar 

  36. Topolski K, Garbacz H, Pachla W, Kurzydlowski KJ (2011) Homogeneity of bulk nanostructured titanium obtained by hydrostatic extrusion. Mater Sci Forum 674:47–51

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Centre Poland [Grant Number 2018/29/B/ST8/02883]. The extrusion processes were conducted at the Institute of High Pressure Physics, Polish Academy of Sciences in Celestynów, Poland. We would like to thank the team of this institute for their cooperation during the extrusion processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Topolski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topolski, K., Adamczyk-Cieślak, B. & Garbacz, H. High-strength ultrafine-grained titanium 99.99 manufactured by large strain plastic working. J Mater Sci 55, 4910–4925 (2020). https://doi.org/10.1007/s10853-019-04291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04291-0

Navigation