Skip to main content
Log in

Synthesis of Sn2Nb2O7-GO nanocomposite as an anode material with enhanced lithium storage performance

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sn2Nb2O7-GO nanocomposite was prepared via a facile hydrothermal process. The sample presented that Sn2Nb2O7 nanocrystals were homogeneously dispersed and tightly anchored on the surface of the GO nanosheets. The GO nanosheets not only act as a buffer matrix to promote the structural integrity of the active material, but also serve as a conductive media to accelerate the charge transfer and lithium-ion diffusion. As a result, Sn2Nb2O7-GO nanocomposite showed enhanced electrochemical performances compared with pure Sn2Nb2O7 and Mixture. As anode material for lithium-ion batteries, the Sn2Nb2O7-GO electrode exhibited a specific capacity of 576.6 mAh g−1 at 0.1 A g−1 current density after 100 cycles. What is more, at a higher current density 2 A g−1, a reversible capacity of about 237.8 mAh g−1 was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Liu L, Xie F, Lyu J et al (2016) Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J Power Sources 321:11–35

    Article  CAS  Google Scholar 

  2. Wang H, Huang H, Niu C et al (2015) Ternary Sn–Ti–O based nanostructures as anodes for lithium ion batteries. Small 11(12):1364–1383

    Article  CAS  Google Scholar 

  3. Wang JF, He DN (2018) In situ growth of heterostructured Sn/SnO nanospheres embedded in crumpled graphene as an anode material for lithium ion batteries. Dalton Trans 47(43):15307–15311

    Article  CAS  Google Scholar 

  4. Bian Z, Li A, He R et al (2018) Metal-organic framework-templated porous SnO/C polyhedrons for high-performance lithium-ion batteries. Electrochim Acta 289:389–396

    Article  CAS  Google Scholar 

  5. Wang X, Cao X, Bourgeois L et al (2012) N-doped grapheme-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv Func Mater 22(13):2682–2690

    Article  CAS  Google Scholar 

  6. Paek SM, Yoo EJ, Honma I (2008) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9(1):72–75

    Article  Google Scholar 

  7. Zou Y, Wang Y (2013) Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chem Eng J 229:183–189

    Article  CAS  Google Scholar 

  8. Shmeliov A, Shannon M, Wang P et al (2014) Unusual stacking variations in liquid-phase exfoliated transition metal dichalcogenides. ACS Nano 8(4):3690–3699

    Article  CAS  Google Scholar 

  9. Im HS, Myung Y, Cho YJ et al (2013) Facile phase and composition tuned synthesis of tin chalcogenide nanocrystals. RSC Adv 3(26):10349–10354

    Article  CAS  Google Scholar 

  10. Xu H, Chen J, Wang D et al (2017) Hierarchically porous carbon-coated SnO2@graphene foams as anodes for lithium ion storage. Carbon 124:565–575

    Article  CAS  Google Scholar 

  11. Wan Y, Sha Y, Luo S et al (2015) Facile synthesis of tin dioxide-based high performance anodes for lithium ion batteries assisted by graphene gel. J Power Sources 295:41–46

    Article  CAS  Google Scholar 

  12. Lee CW, Park HK, Park S et al (2015) Ta-substituted SnNb2−xTaxO6 photocatalysts for hydrogen evolution under visible light irradiation. J Mater Chem A 3(2):825–831

    Article  CAS  Google Scholar 

  13. Katayama S, Hayashi H, Kumagai Y et al (2016) Electronic structure and defect chemistry of tin (II) complex oxide SnNb2O6. J Phys Chem C 120(18):9604–9611

    Article  CAS  Google Scholar 

  14. Taira N, Kakinuma T (2012) Photocatalytic activity of Sn2M2O7 (M=Nb and Ta) pyrochlore oxides with blue LEDs irradiation. J Ceram Soc Jpn 120(1407):551–553

    Article  CAS  Google Scholar 

  15. Kong X, Zhang J, Huang J et al (2019) Microwave assisted hydrothermal synthesis of tin niobates nanosheets with high cycle stability as lithium-ion battery anodes. Chin Chem Lett 30(3):771–774

    Article  CAS  Google Scholar 

  16. Zhai P, Qin J, Guo L et al (2017) Smart hybridization of Sn2Nb2O7/SnO2@3D carbon nanocomposites with enhanced sodium storage performance through self-buffering effects. J Mater Chem A 5(25):13052–13061

    Article  CAS  Google Scholar 

  17. Jahel A, Ghimbeu CM, Monconduit L et al (2014) Confined ultrasmall SnO2 particles in micro/mesoporous carbon as an extremely long cycle-life anode material for Li-ion batteries. Adv Energy Mater 4(11):1400025

    Article  Google Scholar 

  18. Li X, Meng X, Liu J et al (2012) Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv Func Mater 22(8):1647–1654

    Article  CAS  Google Scholar 

  19. Liang J, Wei W, Zhong D et al (2012) One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 4(1):454–459

    Article  CAS  Google Scholar 

  20. Lu Z, Wang H (2014) Fluoride-assisted coaxial growth of SnO2 over-layers on multiwall carbon nanotubes with controlled thickness for lithium ion batteries. Cryst Eng Common 16(4):550–555

    Article  Google Scholar 

  21. Liu X, Wu M, Li M et al (2013) Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries. J Mater Chem A 1(33):9527–9535

    Article  CAS  Google Scholar 

  22. Ouyang H, Gong Q, Li C et al (2019) Porphyra derived hierarchical porous carbon with high graphitization for ultra-stable lithium-ion batteries. Mater Lett 235:111–115

    Article  CAS  Google Scholar 

  23. Wang F, Jiao H, He E et al (2016) Facile synthesis of ultrafine SnO2 nanoparticles embedded in carbon networks as a high-performance anode for lithium-ion batteries. J Power Sources 326:78–83

    Article  CAS  Google Scholar 

  24. Sun J, Sun C, Batabyal SK et al (2012) Morphology and stoichiometry control of hierarchical CuInSe2/SnO2 nanostructures by directed electrochemical assembly for solar energy harvesting. Electrochem Commun 15(1):18–21

    Article  CAS  Google Scholar 

  25. Kong X, Hu D, Wen P et al (2013) Transformation of potassium Lindquist hexaniobate to various potassium niobates: solvothermal synthesis and structural evolution mechanism. Dalton Trans 42(21):7699–7709

    Article  CAS  Google Scholar 

  26. Reddy MJK, Ryu SH, Shanmugharaj AM (2016) Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries. Nanoscale 8(1):471–482

    Article  CAS  Google Scholar 

  27. Liu X, Zhong X, Yang Z et al (2015) Gram-scale synthesis of graphene-mesoporous SnO2 composite as anode for lithium-ion batteries. Electrochim Acta 152:178–186

    Article  CAS  Google Scholar 

  28. Li Q, Kako T, Ye J (2011) Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. Int J Hydrogen Energy 36(8):4716–4723

    Article  CAS  Google Scholar 

  29. Ding J, Wang L, Liu Q et al (2015) Remarkable enhancement in visible-light absorption and electron transfer of carbon nitride nanosheets with 1% tungstate dopant. Appl Catal B 176:91–98

    Google Scholar 

  30. Atuchin VV, Kalabin IE, Kesler VG et al (2005) Nb 3d and O 1s core levels and chemical bonding in niobates. J Electron Spectrosc Relat Phenom 142(2):129–134

    Article  CAS  Google Scholar 

  31. Zhang Z, Yates JT Jr (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112(10):5520–5551

    Article  CAS  Google Scholar 

  32. Lin J, Peng Z, Xiang C et al (2013) Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7(7):6001–6006

    Article  CAS  Google Scholar 

  33. Chen X, Huang Y, Li T et al (2017) Self-assembly of novel hierarchical flowers-like Sn3O4 decorated on 2D graphene nanosheets hybrid as high-performance anode materials for LIBs. Appl Surf Sci 405:13–19

    Article  CAS  Google Scholar 

  34. Han Q, Yi Z, Wang F et al (2017) Preparation of bamboo carbon fiber and sandwich-like bamboo carbon fiber@SnO2@carbon composites and their potential application in structural lithium-ion battery anodes. J Alloy Compd 709:227–233

    Article  CAS  Google Scholar 

  35. Teng Y, Zhao H, Zhang Z et al (2016) MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10:8526–8535

    Article  CAS  Google Scholar 

  36. Liu H, Hu R, Sun W et al (2013) Sn@SnOx/C nanocomposites prepared by oxygen plasma-assisted milling as cyclic durable anodes for lithium ion batteries. J Power Sources 242:114–121

    Article  CAS  Google Scholar 

  37. Hu R, Chen D, Waller G et al (2016) Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ Sci 9(2):595–603

    Article  CAS  Google Scholar 

  38. Lu X, Wu G, Xiong Q et al (2017) Laser in situ synthesis of SnO2/N-doped graphene nanocomposite with enhanced lithium storage properties based on both alloying and insertion reactions. Appl Surf Sci 422:645–653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledgment the support of Project Supported by the Natural Science Foundation of China (No. 51502163), Keypoint Research and Invention in Shaanxi Province of China (No. 2017GY-186), Service local special plan project of Education Department of Shaanxi Province (19JC009), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingang Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Ma, D., Zhang, J. et al. Synthesis of Sn2Nb2O7-GO nanocomposite as an anode material with enhanced lithium storage performance. J Mater Sci 55, 3561–3570 (2020). https://doi.org/10.1007/s10853-019-04220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04220-1

Navigation