Skip to main content
Log in

SnO2/Fe2O3 nano-heterojunction structure composites as an anode for lithium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

SnO2/Fe2O3 composites with a novel heterojunction nanostructure are successfully prepared via a facile two-step hydrothermal method. Fe2O3 nanoparticles with an average size of ~ 15 nm are found to attach onto the surface of SnO2 nanosheets with the diameter about 300 nm. The reversible capacity, cycling stability, and rate performance of the as-prepared nanocomposites are significantly improved compared with SnO2 or Fe2O3, which may be due to the synergistic effect between SnO2 nanosheets and Fe2O3 nanoparticles. Therefore, as an anode material for lithium-ion batteries, SnO2/Fe2O3 nanocomposites deliver a high initial discharge and reversible capacity of 2174.9 mAh g−1 and 1022 mAh g−1 at the current density of 100 mA g−1 and after 100 cycles, respectively. Even at the current density of 1000 mA g−1, the reversible capacity can still keep at 683 mAh g−1 after 100 cycles, which might be a good candidate for high-performance lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shi Y, Ma D, Wang W, Zhang L, Xu X (2017) A supramolecular self-assembly hydrogel binder enables enhanced cycling of SnO2-based anode for high-performance lithium-ion batteries. J Mater Sci 52(7):3545–3555

    Article  CAS  Google Scholar 

  2. Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y (2017) Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11(5):5140–5147

    Article  CAS  Google Scholar 

  3. Park SH, Kim HK, Roh KC, Kim KB (2015) Co3O4-reduced graphene oxide nanocomposite synthesized by microwave-assisted hydrothermal process for Li-ion batteries. Electron Mater Lett 11(2):282–287

    Article  CAS  Google Scholar 

  4. Wu HB, Chen JS, Lou XW, Hng HH (2011) Asymmetric anatase TiO2 nanocrystals with exposed high-index facets and their excellent lithium storage properties. Nanoscale 3(10):4082–4084

    Article  CAS  Google Scholar 

  5. Zhang L, Song J, Liu Y, Yuan X, Guo S (2018) Tailoring nanostructured MnO2 as anodes for lithium ion batteries with high reversible capacity and initial coulombic efficiency. J Power Sources 379:68–73

    Article  CAS  Google Scholar 

  6. Jin R, Jiang H, Sun Y, Ma Y, Li H, Chen G (2016) Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem Eng J 303:501–510

    Article  CAS  Google Scholar 

  7. Jin R, Ma Y, Sun Y, Li H, Wang Q, Chen G (2017) Manganese cobalt oxide (MnCo2O4) hollow spheres as high capacity anode materials for lithium-ion batteries. Energy Technol-Ger 5(2):293–299

    Article  CAS  Google Scholar 

  8. Bing Y, Zeng Y, Liu C, Qiao L, Zheng W (2015) Synthesis of double-shelled SnO2 nano-polyhedra and their improved gas sensing properties. Nanoscale 7(7):3276–3284

    Article  CAS  Google Scholar 

  9. Kar A, Patra A (2014) Recent development of core-shell SnO2 nanostructures and their potential applications. J Mater Chem C 2(33):6706–6722

    Article  CAS  Google Scholar 

  10. Cheng Y, Huang J, Li J, Xu Z, Cao L, Ouyang H, Yan J, Hui Q (2016) SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance. J Alloys Compd 658:234–240

    Article  CAS  Google Scholar 

  11. Liu SL, Li MM, Li S, Li HL (2013) Synthesis, characterization and optical properties of nanostructure Fe2O3 rod bundles. J Synth Cryst 42:1360–1365

    CAS  Google Scholar 

  12. Yin L, Chai S, Wang F, Huang J, Li J, Liu C, Kong X (2016) Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery. Ceram Int 42(8):9433–9437

    Article  CAS  Google Scholar 

  13. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4):3333–3338

    Article  CAS  Google Scholar 

  14. Ye J, Zhang H, Yang R, Li X, Qi L (2010) Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6(2):296–306

    Article  CAS  Google Scholar 

  15. Wang Z, Luan D, Madhavi S, Li CM, Lou XW (2011) α-Fe2O3 nanotubes with superior lithium storage capability. Chem Commun 47(28):8061–8063

    Article  CAS  Google Scholar 

  16. Zhang J, Sun Y, Yao Y, Huang T, Yu A (2013) Lysine-assisted hydrothermal synthesis of hierarchically porous Fe2O3 microspheres as anode materials for lithium-ion batteries. J Power Sources 222:59–65

    Article  CAS  Google Scholar 

  17. Ding M, Liu H, Zhu J, Zhao X, Pang L, Qin Y, Deng L (2018) Constructing of hierarchical yolk-shell structure Li4Ti5O12-SnO2 composites for high rate lithium ion batteries. Appl Surf Sci 448:389–399

    Article  CAS  Google Scholar 

  18. Zhou GW, Wang J, Gao P, Yang X, He YS, Liao XZ, Yang J, Ma ZF (2012) Facile spray drying route for the three-dimensional graphene-encapsulated Fe2O3 nanoparticles for lithium ion battery anodes. Ind Eng Chem Res 52:1197–1204

    Article  Google Scholar 

  19. Guo Q, Qin X (2013) Flower-like SnO2 nanoparticles grown on graphene as anode materials for lithium-ion batteries. J Solid State Electrochem 18:1031–1039

    Article  Google Scholar 

  20. Wang X, Li Z, Zhang Z, Li Q, Guo E, Wang C, Yin L (2015) Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries. Nanoscale 7(8):3604–3613

    Article  CAS  Google Scholar 

  21. Wei C, Zhang G, Bai Y, Yan D, Yu C, Wan N, Zhang W (2015) Al-doped SnO2 hollow sphere as a novel anode material for lithium ion battery. Solid State Ionics 272:133–137

    Article  CAS  Google Scholar 

  22. Wu M-S, Ou Y-H, Lin Y-P (2011) Iron oxide nanosheets and nanoparticles synthesized by a facile single-step coprecipitation method for lithium-ion batteries. J Electrochem Soc 158(3):A231–A236

    Article  CAS  Google Scholar 

  23. Wang Y, Xu J, Wu H, Xu M, Peng Z, Zheng G (2012) Hierarchical SnO2–Fe2O3 heterostructures as lithium-ion battery anodes. J Mater Chem 22(41):21923–21927

    Article  CAS  Google Scholar 

  24. Gu C, Guan W, Shim JJ, Fang Z, Huang J (2016) Size-controlled synthesis and electrochemical performance of porous Fe2O3/SnO2 nanocubes as an anode material for lithium ion batteries. Crystengcomm 19:708–715

    Article  Google Scholar 

  25. Zeng Y, Luo J, Wang Y, Qiao L, Zou B, Zheng W (2017) Controllable formation of multi-layered SnO2@Fe2O3 sandwich cubes as a high-performance anode for Li-ion batteries. Nanoscale 9(44):17576–17584

    Article  CAS  Google Scholar 

  26. Li T, Xin T, Ding Y, Zou J, Liu H, Liu B, Wang Y (2018) SnO2 nanocrystal-Fe2O3 nanorod hybrid structures: an anode material with enhanced lithium storage capacity. J Solid State Electrochem 23:379–387

    Article  Google Scholar 

  27. Yan Y, Du F, Shen X, Ji Z, Zhou H, Zhu G (2014) Porous SnO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries. Dalton T 43(46):17544–17550

    Article  CAS  Google Scholar 

  28. Xia G, Li N, Li D, Liu R, Wang C, Li Q, Lü X, Spendelow JS, Zhang J, Wu G (2013) Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. Appl Mater Interfaces 5(17):8607–8614

    Article  CAS  Google Scholar 

  29. Li Y, Hu Y, Jiang H, Hou X, Li C (2013) Phase-segregation induced growth of core–shell α-Fe2O3/SnO2 heterostructures for lithium-ion battery. Crystengcomm 15(34):6715–6721

  30. Xing LL, Cui CX, Deng P, Nie YX, Zhao YY, He B, Xue XY (2013) Template-free assembly of α-Fe2O3–SnO2 core–shell nanorod arrays on titanium foil and their excellent lithium storage performance. RSC Adv 3(26):10379–10384

    Article  CAS  Google Scholar 

  31. Jin R, Guan Y, Liu H, Zhou J, Chen G (2015) Facile synthesis of SnO2/Fe2O3 hollow spheres and their application as anode materials in lithium-ion batteries. Chempluschem 79:1643–1648

    Article  Google Scholar 

  32. Zhang X, Chen H, Xie Y, Guo J (2014) Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core–shell nanorods. J Mater Chem A 2(11):3912–3918

    Article  CAS  Google Scholar 

  33. Jiang B, He Y, Bo L, Zhao S, Wang S, He YB, Lin Z (2017) Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew Chem Int Ed 56(7):1869–1872

    Article  CAS  Google Scholar 

  34. Hu R, Chen D, Waller G, Ouyang Y, Chen Y, Zhao B, Rainwater B, Yang C, Zhu M, Liu M (2016) Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ Sci 9(2):595–603

    Article  CAS  Google Scholar 

  35. Guo J, Chen L, Wang G, Zhang X, Li F (2014) In situ synthesis of SnO2–Fe2O3@ polyaniline and their conversion to SnO2–Fe2O3@C composite as fully reversible anode material for lithium-ion batteries. J Power Sources 246:862–867

    Article  CAS  Google Scholar 

  36. Xin T, Diao F, Li C, Feng H, Liu G, Zou J, Ding Y, Liu B, Wang Y (2018) Synergistic effect of hierarchical SnO2 nanorods/Fe2O3 hexahedrons with enhanced performance as lithium ion battery anodes. Mater Res Bull 99:196–203

    Article  CAS  Google Scholar 

  37. Huang B, Yang J, Zhou X (2014) Hierarchical SnO2 with double carbon coating composites as anode materials for lithium ion batteries. J Solid State Electrochem 18(9):2443–2449

    Article  CAS  Google Scholar 

  38. Guo J, Jiang B, Zhang X, Liu H (2014) Monodisperse SnO2 anchored reduced graphene oxide nanocomposites as negative electrode with high rate capability and long cyclability for lithium-ion batteries. J Power Sources 262:15–22

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the Natural Science Foundation of Shaanxi Province of China (2018JM2036), the Scientific Research Planning Program of Key laboratory of Shaanxi Province of China (18JS015), and the Graduate Innovation Fund of Shaanxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuling Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., An, Y., Guo, J. et al. SnO2/Fe2O3 nano-heterojunction structure composites as an anode for lithium-ion battery. J Solid State Electrochem 23, 2119–2127 (2019). https://doi.org/10.1007/s10008-019-04303-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04303-8

Navigation