Skip to main content

Advertisement

Log in

Robust perovskite-based triboelectric nanogenerator enhanced by broadband light and interface engineering

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerators (TENGs) are a widely researched type of energy harvester suited to powering mobile micro-electronic devices. In this study, we present a hybrid MAPbIxCl3-x perovskite-based triboelectric nanogenerator (P-TENG) based on the coupling of triboelectric and photoelectric conversion mechanisms for simultaneous vibrating energy and solar energy harvesting. By optimizing the device structure, for the first time, planar TiO2 as electron transport layer (ETL) and ultrathin pentacene as hole transport layer (HTL) are combined together to photoenhance the output of a TENG. Experimental results reveal that P-TENG has achieved the optimal photoinduced enhancement due to the most effective charge separation that relies on the joint of HTL and ETL. As a result, the optimized P-TENG with ~ 0.7 cm2 effective area, the open-circuit voltage (Voc), short-circuit current (Isc) and the maximum transfer charge amount (Qsc) are increased by 55.7%, 50.8% and 58.2% upon illumination, respectively. Besides, the P-TENG shows fast response on both the full-spectrum simulated sunlight and monochromatic light extending from ultraviolet to entire visible region which enhances the potential application in photodetection. Our work presents a route to designing high-performance P-TENG via interfacial engineering to further boost the output ability of this photoelectric hybrid TENG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Huang LB, Xu W, Bai GX, Wong MC, Yang ZB, Hao JH (2016) Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 30:36–42

    Article  Google Scholar 

  2. Shin D, Seong T, Choi J, Choi W (2017) Self-sustaining water-motion sensor platform for continuous monitoring of frequency and amplitude dynamics. Nano Energy 35:179–188

    Article  Google Scholar 

  3. Quan T, Yang Y (2016) Fully enclosed hybrid electromagnetic-triboelectric nanogenerator to scavenge vibrational energy. Nano Res 9:2226–2233

    Article  Google Scholar 

  4. Kang Y, Wang B, Dai S, Liu GL, Pu YP, Hu CG (2015) Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications. ACS Appl Mater Interface 7:20469–20476

    Article  Google Scholar 

  5. Fan FR, Tian ZQ, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1:328–334

    Article  Google Scholar 

  6. Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro/nano systems. Angew Chem Int Ed 51:11700–11721

    Article  Google Scholar 

  7. Meng B, Tang W, Zhang XS, Han MD, Liu W, Zhang HX (2013) Self-powered flexible printed circuit board with integrated triboelectric generator. Nano Energy 2:1101–1106

    Article  Google Scholar 

  8. Fang HJ, Li Q, Ding J, Li N, Tian H, Zhang LJ, Ren TL, Dai JY, Wang LD, Yan QF (2015) A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. J Mater Chem C 4:630–636

    Article  Google Scholar 

  9. Leung S-F, Ho K-T, Kung P-K, Hsiao VKS, Alshareef HN, Wang ZL, He J-H (2018) A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv Mater 30:1704611

    Article  Google Scholar 

  10. Wang XZ, Yang B, Liu JQ, Zhu YB, Yang CS, He Q (2016) A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci Rep 6:36409

    Article  Google Scholar 

  11. Xia XN, Chen J, Liu GL, Javed MS, Wang X, Hu CG (2016) Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator. Carbon 111:569–576

    Article  Google Scholar 

  12. Zhou GD, Sun B, Yao YQ, Zhang HH, Zhou AK, Alameh K, Ding BF, Song QL (2016) Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires. Appl Phys Lett 109:143904

    Article  Google Scholar 

  13. Zhu G, Pan CF, Chen CY, Zhou YS, Yu RM, Wang ZL (2012) Triboelectric-generator-driven pulse electrode position for micropatterning. Nano Lett 1:4960–4965

    Article  Google Scholar 

  14. Kim D, Lee HM, Choi YK (2017) Large-sized sandpaper coated with solution-processed aluminum for a triboelectric nanogenerator with reliable durability. RSC Adv 7:137–144

    Article  Google Scholar 

  15. Wang SH, Lin L, Wang ZL (2012) Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12:6339–6346

    Article  Google Scholar 

  16. Yang XD, Han JJ, Wu F, Rao X, Zhou GD, Xu CY, Li P, Song QL (2017) A novel retractable spring-like-electrode triboelectric nanogenerator with highly-effective energy harvesting and conversion for sensing road condition. RSC Adv 7:50993–51000

    Article  Google Scholar 

  17. Liu GL, Guo HY, Chen L, Wang X, Wei DP, Hu CG (2016) Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization. Nano Res 9:3355–3363

    Article  Google Scholar 

  18. Kim KN, Lee JP, Lee SH, Lee SC, Baik JM (2016) Ergonomically designed replaceable and multifunctional triboelectric nanogenerator for a uniform contact. RSC Adv 6:88526–88530

    Article  Google Scholar 

  19. Guo H, Wen Z, Zi Y, Yeh MH, Wang J, Zhu L, Hu C and Wang ZL (2016) A water-proof triboelectric-electromagnetic hybrid generator for energy harvesting in harsh environments. Adv Energy Mater 6:n/a–n/a

  20. Quan T, Wu Y, Yang Y (2015) Hybrid electromagnetic-triboelectric nanogenerator for harvesting vibration energy. Nano Res 8:3272–3280

    Article  Google Scholar 

  21. Hassan G, Khan F, Hassan A, Ali S, Bae J, Lee CH (2017) A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting. Nanotechnology 28:175402

    Article  Google Scholar 

  22. Han M, Zhang XS, Meng B, Liu W, Tang W, Sun X, Wang W, Zhang H (2013) A r-Shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano 7:8554–8560

    Article  Google Scholar 

  23. Wang YP, Zhang X, Guo XB, Dong Li, Cui BS, Wu K, Yun JJ, Mao J, Xi L, Zuo Y (2018) Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy. J Mater Sci 53:13081–13089

    Article  Google Scholar 

  24. Yang Y, Jung JH, Yun BK, Zhang F, Pradel KC, Guo W, Wang ZL (2012) Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv Mater 24:5357–5362

    Article  Google Scholar 

  25. Zi Y, Lin L, Wang J, Wang S, Chen J, Fan X, Yang PK, Yi F, Wang ZL (2015) Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv Mater 27:2340–2347

    Article  Google Scholar 

  26. Yang Y, Zhang H, Liu Y, Lin ZH, Lee S, Lin Z, Wong CP, Wang ZL (2013) Silicon-based hybrid energy cell for self-powered electrode gradation and personal electronics. ACS Nano 7:2808–2813

    Article  Google Scholar 

  27. Guo H, He X, Zhong J, Zhong Q, Leng Q, Hu C, Chen J, Tian L, Xi Y, Zhou J (2014) A nanogenerator for harvesting airflow energy and light energy. J Mater Chem A 2:2079–2087

    Article  Google Scholar 

  28. Zheng L, Lin ZH, Cheng G, Wu W, Wen X, Lee S, Wang ZL (2014) Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy 9:291–300

    Article  Google Scholar 

  29. Zheng L, Cheng G, Chen J, Lin L, Wang J, Liu Y, Li H, Wang ZL (2015) A hybridized power panel to simultaneously generate electricity from sunlight, raindrops and wind around the clock. Adv Energy Mater 5:1501152

    Article  Google Scholar 

  30. Yang XD, Wang G, Liu DB, Yao YQ, Zhou GD, Li P, Wu B, Rao X, Song QL (2018) Pentacene as a hole transport material for high performance planar perovskite solar cells. Curr Appl Phys 18:1095–1100

    Article  Google Scholar 

  31. Wang G, Liu DB, Xiang J, Zhou DC, Alameh K, Ding BF, Song QL (2016) Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating. RSC Adv 6:43299–43303

    Article  Google Scholar 

  32. Song Z, Watthage SC, Phillips AB, Heben MJ (2016) Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J Photon Energy 6:022001

    Article  Google Scholar 

  33. Petrus ML, Schlipf J, Li C, Gujar TP, Giesbrecht N, Müller-Buschbaum P, Thelakkat M, Bein T, Hüttner S, Docampo P (2017) Capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Adv Energy Mater 7:1700264

    Article  Google Scholar 

  34. Ono LK, Qi Y (2018) Research progress on organic-inorganic halide perovskite materials and solar cells. J Phys D Appl Phys 51:093001

    Article  Google Scholar 

  35. Hu X, Zhang XD, Liang L, Bao J, Li S, Yang WL, Xie Y (2014) High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater 24:7373–7380

    Article  Google Scholar 

  36. Sutherland BR, Johnston AK, Ip AH, Xu JX, Adinolfi V, Kanjanaboos P, Sargent EH (2015) Sensitive, fast and stable perovskite photodetectors exploiting interface engineering. ACS Photonics 2:1117–1123

    Article  Google Scholar 

  37. Dou L, Yang Y (Micheal), You J, Hong Z, Chang W-H, Li G, Yang Y (2014) Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 5:5404

    Article  Google Scholar 

  38. Su L, Zhao ZX, Li HY, Yuan J, Wang ZL, Cao GZ, Zhu G (2015) High-performance organolead halide perovskite-based self-powered triboelectric photodetector. ACS Nano 9:11310

    Article  Google Scholar 

  39. Adinolfi V, Ouellette O, Saidaminov MI, Walters G, Abdelhady AL, Bakr OM, Sargent EH (2016) Fast and sensitive solution-processed visible-blind perovskite UV photodetectors. Adv Mater 28:7264–7268

    Article  Google Scholar 

  40. Saraf R, Maheshwari V (2018) Self-powered photodetector based on electric-field-induced effects in MAPbI3 perovskite with improved stability. ACS Appl Mater Interfaces 10:21066–21072

    Article  Google Scholar 

  41. Zhou H, Song Z, Grice CR, Chen C, Yang X, Wang H, Yan Y (2018) Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite microcrystal photodetectors. J Phys Chem Lett 9:4714–4719

    Article  Google Scholar 

  42. Zhou H, Song ZN, Wang C, Grice CR, Song ZH, Zhao D, Wang H, Yan Y (2018) Double coating for the enhancement of the performance in a MA0.7FA0.3PbBr 3 photodetector. ACS Photonics 5:2100–2105

    Article  Google Scholar 

  43. Ding R, Liu H, Zhang XL, Xiao JX, Kishor R, Sun HX, Zhu BW, Chen G, Gao F, Feng XH, Chen JS, Chen XD, Sun XW, Zheng YJ (2016) Flexible piezoelectric nanocomposite generators based on formamidinium lead halide perovskite nanoparticles. Adv Funct Mater 26:7708–7716

    Article  Google Scholar 

  44. Su L, Zhao ZX, Li HY, Wang Y, Kuang SY, Cao GZ, Wang ZL, Zhu G (2016) Photoinduced enhancement of a triboelectric nanogenerator based on an organolead halide perovskite. J Mater Chem C 4:10395–10399

    Article  Google Scholar 

  45. Zhou GD, Duan SK, Li P, Yao YQ, Sun B, Wu JG, Yang XD, Han JJ, Wang G, Liao LP, Lin CY, Hu W, Xu CY, Liu DB, Chen T, Chen LJ, Zhou AK, Song QL (2018) Coexistence of negative differential resistance and resistive switching memory at room temperature in TiOx modulated by moisture. Adv Electron Mater 4:1700567

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11774293), Fundamental Research Funds for the Central Universities (XDJK2017A002), Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601011) and Key Laboratory and Scientific Research Foundation of Zunyi City (SSKH[2015]55).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Dong Zhou or Qun Liang Song.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X.D., Han, J.J., Wang, G. et al. Robust perovskite-based triboelectric nanogenerator enhanced by broadband light and interface engineering. J Mater Sci 54, 9004–9016 (2019). https://doi.org/10.1007/s10853-019-03351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03351-9

Navigation