Skip to main content
Log in

Atomistic modeling of interfacial segregation and structural transitions in ternary alloys

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Grain boundary engineering via dopant segregation can dramatically change the properties of a material. For metallic systems, most current studies concerning interfacial segregation and subsequent transitions of grain boundary structure are limited to binary alloys, yet many important alloy systems contain more than one type of dopant. In this work, hybrid Monte Carlo/molecular dynamics simulations are performed to investigate the behavior of dopants at interfaces in two model ternary alloy systems: Cu–Zr–Ag and Al–Zr–Cu. Trends in boundary segregation are studied, as well as the propensity for the grain boundary structure to become disordered at high temperature and doping concentration. For Al–Zr–Cu, we find that the two solutes prefer to occupy different sites at the grain boundary, leading to a synergistic doping effect. Alternatively, for Cu–Zr–Ag, there is site competition because the preferred segregation sites are the same. Finally, we find that thicker amorphous intergranular films can be formed in ternary systems by controlling the concentration ratio of different solute elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. McLean D (1957) Grain boundaries in metals, 1st edn. Clarendon Press, Oxford

    Google Scholar 

  2. Sutton AP, Balluffi RW (2006) Interfaces in crystalline materials. Oxford University Press, New York

    Google Scholar 

  3. Randle V (1993) The measurement of grain boundary geometry, 1st edn. Taylor and Francis, London

    Google Scholar 

  4. Howe JM (1997) Interfaces in materials: atomic structure, thermodynamics and kinetics of solid–vapor, solid–liquid and solid–solid interfaces. Wiley-Interscience, New York

    Google Scholar 

  5. Gottstein G, Shvindlerman LS (2009) Grain boundary migration in metals: thermodynamics, kinetics, applications, 2nd edn. CRC Press, New York

    Book  Google Scholar 

  6. Wolf D, Yip S (1992) Materials interfaces: atomic-level structure and properties, 1st edn. CRC Press, New York

    Google Scholar 

  7. Alexander BH, Balluffi RW (1957) The mechanism of sintering of copper. Acta Metall 5:666–677

    Article  CAS  Google Scholar 

  8. Burke JE (1957) Role of grain boundaries in sintering. J Am Ceram Soc 40:80–85

    Article  CAS  Google Scholar 

  9. Coble RL, Burke JE (1963) Sintering in ceramics. Progr Ceram Sci 3:197–251

    CAS  Google Scholar 

  10. Djohari H, Derby JJ (2009) Transport mechanisms and densification during sintering: II. Grain boundaries. Chem Eng Sci 64:3810–3816

    Article  CAS  Google Scholar 

  11. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  CAS  Google Scholar 

  12. Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys1. Acta Mater 51:5743–5774

    Article  CAS  Google Scholar 

  13. Dao M, Lu L, Asaro RJ, De Hosson JT, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065

    Article  CAS  Google Scholar 

  14. Mathaudhu SN, Boyce BL (2015) Thermal stability: the next frontier for nanocrystalline materials. JOM 67:2785–2787

    Article  Google Scholar 

  15. Kalidindi AR, Chookajorn T, Schuh CA (2015) Nanocrystalline materials at equilibrium: a thermodynamic review. JOM 67:2834–2843

    Article  CAS  Google Scholar 

  16. Peng HR, Gong MM, Chen YZ, Liu F (2017) Thermal stability of nanocrystalline materials: thermodynamics and kinetics. Int Mater Rev 62:303–333

    Article  CAS  Google Scholar 

  17. Raabe D, Herbig M, Sandlobes S, Li Y, Tytko D, Kuzmina M, Ponge D, Choi PP (2014) Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18:253–261

    Article  CAS  Google Scholar 

  18. Seah MP (1980) Grain-boundary segregation. J Phys F Met Phys 10:1043–1064

    Article  CAS  Google Scholar 

  19. Jorgensen PJ, Westbrook JH (1964) Role of solute segregation at grain boundaries during final-stage sintering of alumina. J Am Ceram Soc 47:332–338

    Article  CAS  Google Scholar 

  20. Jorgensen PJ (1965) Modification of sintering kinetics by solute segregation in Al2O3. J Am Ceram Soc 48:207–210

    Article  CAS  Google Scholar 

  21. Schuler JD, Rupert TJ (2017) Materials selection rules for amorphous complexion formation in binary metallic alloys. Acta Mater 140:196–205

    Article  CAS  Google Scholar 

  22. Khalajhedayati A, Pan ZL, Rupert TJ (2016) Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat Commun 7:10802-1–10802-8

    Article  CAS  Google Scholar 

  23. Khalajhedayati A, Rupert TJ (2015) High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu–Zr alloy. JOM 67:2788–2801

    Article  CAS  Google Scholar 

  24. Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954

    Article  CAS  Google Scholar 

  25. Mayr SG, Bedorf D (2007) Stabilization of Cu nanostructures by grain boundary doping with Bi: experiment versus molecular dynamics simulation. Phys Rev B 76:024111-1–024111-8

    Article  CAS  Google Scholar 

  26. Harzer TP, Djaziri S, Raghavan R, Dehm G (2015) Nanostructure and mechanical behavior of metastable Cu–Cr thin films grown by molecular beam epitaxy. Acta Mater 83:318–332

    Article  CAS  Google Scholar 

  27. Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Complexion: a new concept for kinetic engineering in materials science. Acta Mater 55:6208–6218

    Article  CAS  Google Scholar 

  28. Harmer MP (2011) The phase behavior of interfaces. Science 332:182–183

    Article  CAS  Google Scholar 

  29. Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions. Acta Mater 62:1–48

    Article  CAS  Google Scholar 

  30. Pan Z, Rupert TJ (2015) Amorphous intergranular films as toughening structural features. Acta Mater 89:205–214

    Article  CAS  Google Scholar 

  31. Luo J (2008) Liquid-like interface complexion: from activated sintering to grain boundary diagrams. Curr Opin Solid State Mater Sci 12:81–88

    Article  CAS  Google Scholar 

  32. Luo J, Wang H, Chiang Y (1999) Origin of solid-state activated sintering in Bi2O3-doped ZnO. J Am Ceram Soc 82:916–920

    Article  CAS  Google Scholar 

  33. Gupta VK, Yoon DH, Meyer HM, Luo J (2007) Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater 55:3131–3142

    Article  CAS  Google Scholar 

  34. Nie J, Chan JM, Qin M, Zhou N, Luo J (2017) Liquid-like grain boundary complexion and sub-eutectic activated sintering in CuO-doped TiO2. Acta Mater 130:329–338

    Article  CAS  Google Scholar 

  35. Darling KA, Rajagopalan M, Komarasamy M, Bhatia MA, Hornbuckle BC, Mishra RS, Solanki KN (2016) Extreme creep resistance in a microstructurally stable nanocrystalline alloy. Nature 537:378–381

    Article  CAS  Google Scholar 

  36. Rajagopalan M, Darling K, Turnage S, Koju RK, Hornbuckle B, Mishin Y, Solanki KN (2017) Microstructural evolution in a nanocrystalline Cu–Ta alloy: a combined in-situ TEM and atomistic study. Mater Des 113:178–185

    Article  CAS  Google Scholar 

  37. Koju RK, Darling KA, Kecskes LJ, Mishin Y (2016) Zener pinning of grain boundaries and structural stability of immiscible alloys. JOM 68:1596–1604

    Article  CAS  Google Scholar 

  38. Mishin Y (2014) Calculation of the γ/γ′ interface free energy in the Ni–Al system by the capillary fluctuation method. Model Simul Mater Sci Eng 22:045001-1–045001-16

    Article  CAS  Google Scholar 

  39. Pun GP, Yamakov V, Mishin Y (2015) Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Model Simul Mater Sci Eng 23:065006

    Article  CAS  Google Scholar 

  40. Williams PL, Mishin Y (2009) Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation. Acta Mater 57:3786–3794

    Article  CAS  Google Scholar 

  41. Li A, Szlufarska I (2017) Morphology and mechanical properties of nanocrystalline Cu/Ag alloy. J Mater Sci 52:4555–4567. https://doi.org/10.1007/s10853-016-0700-3

    Article  CAS  Google Scholar 

  42. Ke X, Sansoz F (2017) Segregation-affected yielding and stability in nanotwinned silver by microalloying. Phys Rev Mater 1(6):063604

    Article  Google Scholar 

  43. Cipolloni G, Pellizzari M, Molinari A, Hebda M, Zadra M (2015) Contamination during the high-energy milling of atomized copper powder and its effects on spark plasma sintering. Powder Technol 275:51–59

    Article  CAS  Google Scholar 

  44. Zhou NX, Luo J (2015) Developing grain boundary diagrams for multicomponent alloys. Acta Mater 91:202–216

    Article  CAS  Google Scholar 

  45. Zhou NX, Hu T, Luo J (2016) Grain boundary complexions in multicomponent alloys: challenges and opportunities. Curr Opin Solid State Mater Sci 20:268–277

    Article  CAS  Google Scholar 

  46. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306

    Article  CAS  Google Scholar 

  47. Zhou N, Hu T, Huang J, Luo J (2016) Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr Mater 124:160–163

    Article  CAS  Google Scholar 

  48. Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L (2012) Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B 85:184203-1–184203-11

    Article  CAS  Google Scholar 

  49. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  50. Zhang L, Lu C, Tieu K (2014) Atomistic simulation of tensile deformation behavior of Σ5 tilt grain boundaries in copper bicrystal. Sci Rep 4:5919-1–5919-9

    Google Scholar 

  51. Tschopp MA, Coleman SP, McDowell DL (2015) Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals). Integr Mater Manuf Innov 4:11-1–11-14

    Article  Google Scholar 

  52. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng 18:015012-1–015012-7

    Google Scholar 

  53. Honeycutt JD, Andersen HC (1987) Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem US 91:4950–4963

    Article  CAS  Google Scholar 

  54. Frolov T, Asta M, Mishin Y (2015) Segregation-induced phase transformations in grain boundaries. Phys Rev B 92:020103-1–020103-5

    Article  CAS  Google Scholar 

  55. Liu XY, Xu W, Foiles SM, Adams JB (1998) Atomistic studies of segregation and diffusion in Al–Cu grain boundaries. Appl Phys Lett 72:1578–1580

    Article  CAS  Google Scholar 

  56. Carpenter DT, Watanabe M, Barmak K, Williams DB (1999) Low-magnification quantitative X-ray mapping of grain-boundary segregation in aluminum–4 wt.% copper by analytical electron microscopy. Microsc Microanal 5:254–266

    Article  CAS  Google Scholar 

  57. Chen Y, Gao N, Sha G, Ringer SP, Starink MJ (2016) Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy. Acta Mater 109:202–212

    Article  CAS  Google Scholar 

  58. Tsivoulas D, Robson JD (2015) Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys. Acta Mater 93:73–86

    Article  CAS  Google Scholar 

  59. Yan HB, Gan FX, Huang DQ (1989) Evaporated Cu–Al amorphous-alloys and their phase-transition. J Non-Cryst Solids 112:221–227

    Article  Google Scholar 

  60. Yang JJ, Yang Y, Wu K, Chang YA (2005) The formation of amorphous alloy oxides as barriers used in magnetic tunnel junctions. J Appl Phys 98:074508-1–074508-6

    Google Scholar 

  61. Cui YY, Wang TL, Li JH, Dai Y, Liu BX (2011) Thermodynamic calculation and interatomic potential to predict the favored composition region for the Cu–Zr–Al metallic glass formation. Phys Chem Chem Phys 13:4103–4108

    Article  CAS  Google Scholar 

  62. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453

    Article  CAS  Google Scholar 

  63. Fujita T, Guan PF, Sheng HW, Inoue A, Sakurai T, Chen MW (2010) Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass. Phys Rev B 81:140204-1–140204-4

    Article  CAS  Google Scholar 

  64. Cheng YQ, Ma E, Sheng HW (2009) Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett 102:245501-1–245501-4

    Google Scholar 

  65. Hu Y, Schuler JD, Rupert TJ (2018) Identifying interatomic potentials for the accurate modeling of interfacial segregation and structural transitions. Comput Mater Sci 148:10–20

    Article  CAS  Google Scholar 

  66. Murray JL (1985) The aluminium–copper system. Int Met Rev 30(1):211–234

    Article  CAS  Google Scholar 

  67. Turchanin M (1997) Calorimetric research on the heat of formation of liquid alloys of copper with group IIIA and group IVA metals. Powder Metall Met Ceram 36:253–263

    Article  CAS  Google Scholar 

  68. Edwards RK, Downing JH (1956) The thermodynamics of the liquid solutions in the triad Cu–Ag–Au. I. The Cu–Ag system. J Phys Chem US 60:108–111

    Article  CAS  Google Scholar 

  69. Esin YO, Bobrov NP, Petrushevskiy MS, Geld PV (1974) Enthalpy of formation of liquid aluminum-alloys with titanium and zirconium. Russ Metall 5:86–89

    Google Scholar 

  70. Witusiewicz VT, Hecht U, Fries SG, Rex S (2004) The Ag–Al–Cu system: part I: reassessment of the constituent binaries on the basis of new experimental data. J Alloys Compd 385:133–143

    CAS  Google Scholar 

  71. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002-1–011002-11

    Article  CAS  Google Scholar 

  72. Lazarus D (1949) The variation of the adiabatic elastic constants of KCl, NaCl, CuZn, Cu, and Al with pressure to 10,000 bars. Phys Rev 76:545–553

    Article  CAS  Google Scholar 

  73. Hearmon RFS (1946) The elastic constants of anisotropic materials. Rev Mod Phys 18:409–440

    Article  CAS  Google Scholar 

  74. Hearmon RFS (1956) The elastic constants of anisotropic materials—II. Adv Phys 5:323–382

    Article  Google Scholar 

  75. Straumanis ME, Yu LS (1969) Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-in alpha phase. Acta Cryst 25:676–682

    Article  CAS  Google Scholar 

  76. Hertzberg RW (1996) Deformation and fracture and fracture mechanics of engineering materials, 4th edn. Wiley, New York

    Google Scholar 

  77. Methfessel M, Hennig D, Scheffler M (1992) Trends of the surface relaxations, surface energies, and work-functions of the 4d transition-metals. Phys Rev B 46:4816–4829

    Article  CAS  Google Scholar 

  78. Liu LG, Bassett WA (1973) Compression of Ag and phase transformation of NaCl. J Appl Phys 44:1475–1479

    Article  CAS  Google Scholar 

  79. Straumanis ME, Woodward CL (1971) Lattice parameters and thermal expansion coefficients of Al, Ag and Mo at low temperatures. Comparison with dilatometric data. Acta Cryst 27:549–551

    Article  CAS  Google Scholar 

  80. Yang S, Zhou N, Zheng H, Ong SP, Luo J (2018) First-order interfacial transformations with a critical point: breaking the symmetry at a symmetric tilt grain boundary. Phys Rev Lett 120:085702-1–085702-6

    Google Scholar 

  81. Tewari A, Galmarini S, Stuer M, Bowen P (2012) Atomistic modeling of the effect of codoping on the atomistic structure of interfaces in alpha-alumina. J Eur Ceram Soc 32:2935–2948

    Article  CAS  Google Scholar 

  82. Huang ZF, Chen F, Shen Q, Zhang L, Rupert TJ (work in preparation) Combined effects of nonmetallic impurities and planned metallic dopants on grain boundary energy and strength

  83. Dieter GE (1986) Mechanical metallurgy, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  84. Chen N, Niu LL, Zhang Y, Shu X, Zhou HB, Jin S, Ran G, Lu GH, Gao F (2016) Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten. Sci Rep 6:36955-1–36955-12

    Google Scholar 

  85. Zhou X, Song J (2017) Effect of local stress on hydrogen segregation at grain boundaries in metals. Mater Lett 196:123–127

    Article  CAS  Google Scholar 

  86. Liu XY, Adams JB (1998) Grain-boundary segregation in Al–10% Mg alloys at hot working temperatures. Acta Mater 46:3467–3476

    Article  CAS  Google Scholar 

  87. Wang D, Tan H, Li Y (2005) Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—a metallographic way to pinpoint the best glass forming alloys. Acta Mater 53:2969–2979

    Article  CAS  Google Scholar 

  88. Wang XD, Jiang QK, Cao QP, Bednarcik J, Franz H, Jiang JZ (2008) Atomic structure and glass forming ability of Cu46Zr46Al8 bulk metallic glass. J Appl Phys 104:093519-1–093519-5

    Google Scholar 

  89. Inoue A, Zhang W (2002) Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater Trans 43:2921–2925

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division under Award No. DE-SC0014232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Rupert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Rupert, T.J. Atomistic modeling of interfacial segregation and structural transitions in ternary alloys. J Mater Sci 54, 3975–3993 (2019). https://doi.org/10.1007/s10853-018-3139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3139-x

Keywords

Navigation