Skip to main content
Log in

Effect of U and Th trace additions on the precipitation strengthening of Al–0.09Sc (at.%) alloy

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The age hardening response of Al–0.09Sc (at.%), to which trace amounts (< 100 ppm) of actinides (An = U or Th) were added, is studied by microhardness, conductivity, transmission electron microscopy, and atom probe tomography (APT). Peak-age hardening at 300 °C is associated with a high number density of nanoscale L12-Al3(Sc1 − xAnx) precipitates with core/shell structure. The first alloy Al–0.09Sc–0.006U (at.%) has a peak microhardness similar to that of binary Al–0.09Sc (at.%), but a shorter incubation period for hardening which is consistent with U diffusing faster than Sc in Al and acting as nucleant for Al3Sc. This is confirmed by APT measurements of precipitate composition, Al3(Sc0.8U0.2), showing that U has high solubility in Al3Sc precipitates and segregates at their core. The second alloy, Al–0.09Sc–0.008Th (at.%), exhibits Th-poor Al3(Sc0.98Th0.02) precipitates with Th segregation in their shells and it has microhardness evolution undistinguishable from binary Al–0.09Sc; this is indicative of low solubility of Th in L12-Al3Sc and/or low diffusivity of Th in Al. These two primordial actinides -U and Th- show different abilities to coprecipitate with Al3Sc precipitate in aluminum, they, however, both improve coarsening resistance after 143 days at 300 °C by forming core/shell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Toropova L, Eskin D, Kharakterova M, Dobatkina T (1998) Advanced aluminum alloys containing scandium. Routledge, London

    Google Scholar 

  2. Fujikawa SI (1997) Impurity diffusion of scandium in aluminum. Defect Diffus Forum 143:115–120

    Article  Google Scholar 

  3. Novotny GM, Ardell AJ (2001) Precipitation of Al3Sc in binary Al–Sc alloys. Mater Sci Eng A Struct 318:144–154

    Article  Google Scholar 

  4. Hyland RW (1992) Homogeneous nucleation kinetics of Al3Sc in a dilute Al–Sc alloy. Metall Trans A 23:1947–1955

    Article  Google Scholar 

  5. Asta M, Ozoliņš V (2001) Structural, vibrational, and thermodynamic properties of Al–Sc alloys and intermetallic compounds. Phys Rev B 64:094104

    Article  Google Scholar 

  6. Fuller CB, Seidman DN, Dunand DC (1999) Creep properties of coarse-grained Al(Sc) alloys at 300 degrees C. Scripta Mater 40:691–696

    Article  CAS  Google Scholar 

  7. Marquis EA, Seidman DN, Dunand DC (2002) Creep of precipitation-strengthened Al(Sc) alloys. In: Mishra RS, Earthman JC, Raj SV (eds) Creep deformation: fundamentals and applications. TMS The Minerals, Metals & Materials Society, Pittsburgh, p 299–308

    Google Scholar 

  8. Harada Y, Dunand DC (2003) Thermal expansion of Al3Sc and Al3(Sc0.75X0.25). Scripta Mater 48:219–222

    Article  CAS  Google Scholar 

  9. Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919

    Article  CAS  Google Scholar 

  10. Iwamura S, Miura Y (2004) Loss in coherency and coarsening behavior of Al3Sc precipitates. Acta Mater 52:591–600

    Article  CAS  Google Scholar 

  11. Fuller CB, Murray JL, Seidman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: part I—chemical compositions of Al3(Sc1 − xZrx) Precipitatesy. Acta Mater 53:5401–5413

    Article  CAS  Google Scholar 

  12. Fuller CB, Seldman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) Alloys: part II-Coarsening of Al3(Sc1 − XZrx) precipitates. Acta Mater 53:5415–5428

    Article  CAS  Google Scholar 

  13. Marquis EA, Seidman DN (2005) Coarsening kinetics of nanoscale Al3Sc precipitates in An Al–Mg–Sc alloy. Acta Mater 53:4259–4268

    Article  CAS  Google Scholar 

  14. Watanabe C, Watanabe D, Monzen R (2006) Coarsening behavior of Al3Sc precipitates in an Al–Mg–Sc alloy. Mater Trans 47:2285–2291

    Article  CAS  Google Scholar 

  15. Simonovic D, Sluiter MHF (2011) Predicting the benefits of adding ternary elements to Al–Sc alloys. In: MRS proceedings 979: 0979-HH0911-0935

  16. Zhang H, Wang S (2011) The Structural stabilities of Al3(Sc1 − XMx) by first-principles calculations. Comput Mater Sci 50:2162–2166

    Article  CAS  Google Scholar 

  17. Karnesky RA, Seidman DN, Dunand DC (2006) Creep of Al–Sc microalloys with rare-earth element additions, aluminium alloys 2006, Pts 1 and 2 519–521:1035–1040

  18. Harada Y, Dunand DC (2007) Microstructure and hardness of scandium trialuminide with ternary rare-earth additions, Thermec 2006, Pts 1–5 539–543: 1565–1570

  19. De Luca A, Dunand DC, Seidman DN (2018) Scandium-enriched nanoprecipitates in aluminum providing enhanced coarsening and creep resistance. Light Metals 2018:1589–1594

    Google Scholar 

  20. Krug ME, Werber A, Dunand DC, Seidman DN (2010) Core-shell nanoscale precipitates in Al–0.06 at.%Sc microalloyed with Tb, Ho, Tm or Lu. Acta Materialia 58:134–145

    Article  CAS  Google Scholar 

  21. Van Dalen ME, Dunand DC, Seidman DN (2011) Microstructural evolution and creep properties of precipitation-strengthened Al–0.06Sc–0.02Gd and Al–0.06Sc–0.02Yb (at.%) alloys. Acta Mater 59:5224–5237

    Article  Google Scholar 

  22. Harada Y, Dunand DC (2009) Microstructure of Al3Sc with ternary rare-earth additions. Intermetallics 17:17–24

    Article  CAS  Google Scholar 

  23. Karnesky RA, van Dalen ME, Dunand DC, Seidman DN (2006) Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at.%Sc alloy. Scripta Mater 55:437–440

    Article  CAS  Google Scholar 

  24. Sawtell RR MJ (1988) In: Kim Y-W, Griffith WM (eds) Dispersion strengthened aluminum alloys, TMS, Warrendale

  25. van Dalen ME, Karnesky RA, Cabotaje JR, Dunand DC, Seidman DN (2009) Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta Mater 57:4081–4089

    Article  Google Scholar 

  26. Vo NQ, Dunand DC, Seidman DN (2014) Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er. Acta Materialia 63:73–85

    Article  CAS  Google Scholar 

  27. Knipling KE, Dunand DC, Seidman DN (2006) Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Z Metallkd 97:246–265

    Article  CAS  Google Scholar 

  28. Sarapää O, Lauri LS, Ahtola T, Al-Ani T, Grönholm S, Kärkkäinen N, Lintinen P, Torppa A, Turunen P (2015) Discovery potential of hi-tech metals and critical minerals in Finland. Tutkimusraportti - Geologian Tutkimuskeskus 219:1–54

    Google Scholar 

  29. Lash LD, Ross JR (1961) Scandium recovery from uranium solutions. Jom-Us 13:555–558

    Article  CAS  Google Scholar 

  30. Altinsel Y, Topkaya Y, Kaya Ş, Şentürk B (2018) Extraction of scandium from lateritic nickel–cobalt ore leach solution by ion exchange: a special study and literature review on previous works. Light Metals 2018:1545–1553

    Google Scholar 

  31. Rough FA, Bauer AA (1958) Constitution of uranium and thorium alloys. Battelle Memorial Institute, Columbus

    Book  Google Scholar 

  32. Gafvert T, Pagels J, Holm E (2003) Thorium exposure during tungsten inert gas welding with thoriated tungsten electrodes. Radiat Prot Dosim 103:349–357

    Article  CAS  Google Scholar 

  33. Costa L (2015) Welding with non-consumable thoriated tungsten electrodes. Weld World 59:145–150

    Article  CAS  Google Scholar 

  34. Harada Y, Dunand DC (2002) Microstructure of Al(3)Sc with ternary transition-metal additions. Mater Sci Eng A Struct 329:686–695

    Article  Google Scholar 

  35. Kelly TF, Miller MK (2007) Atom probe tomography. Rev Sci Instrum 78:1–20

    Article  Google Scholar 

  36. Seidman DN (2007) Three-dimensional atom-probe tomography: advances and applications. Annu Rev Mater Res 37:127–158

    Article  CAS  Google Scholar 

  37. Miller MK, Cerezo A, Hetherington MG, Smith GDW (1996) atom probe field ion microscopy. Clarendon Press, Oxford

    Google Scholar 

  38. Hellman OC, Vandenbroucke JA, Rusing J, Isheim D, Seidman DN (2000) Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6:437–444

    CAS  Google Scholar 

  39. Kassner ME, Adler PH, Adamson MG, Peterson DE (1989) Evaluation and thermodynamic analysis of phase equilibria in the U-Al system. J Nucl Mater 167:160–168

    Article  Google Scholar 

  40. Roy PR (1964) Determination of a-aluminium solid solubility limits in the aluminium–uranium and aluminium–plutonium systems. J Nucl Mater 11:59–66

    Article  CAS  Google Scholar 

  41. Buckle H (1946) Determination of free energy through microhardness testing. Metallforschung 37:43–47

    Google Scholar 

  42. Booth-Morrison C, Dunand DC, Seidman DN (2011) Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er Alloys. Acta Mater 59:7029–7042

    Article  CAS  Google Scholar 

  43. Karnesky R (2007) Mechanical properties and microstructure of Al–Sc with rareearth element or Al2O3 additions. Northwestern University, Evanston

    Google Scholar 

  44. Karnesky RA, Dunand DC, Seidman DN (2009) Evolution of nanoscale precipitates in Al microalloyed with Sc and Er. Acta Mater 57:4022–4031

    Article  CAS  Google Scholar 

  45. Voorhees PW, McFadden GB, Johnson WC (1992) On the morphological development of 2nd-phase particles in elastically-stressed solids. Acta Metall Mater 40:2979–2992

    Article  CAS  Google Scholar 

  46. Mao Z, Chen W, Seidman DN, Wolverton C (2011) First-principles study of the nucleation and stability of ordered precipitates in ternary Al–Sc–Li alloys. Acta Mater 59:3012–3023

    Article  CAS  Google Scholar 

  47. Asta M, Foiles SM, Quong AA (1998) first-principles calculations of bulk and interfacial thermodynamic properties for Fcc-based Al–Sc alloys. Phys Rev B 57:11265–11275

    Article  CAS  Google Scholar 

  48. Marquis EA, Seidman DN, Asta M, Woodward C (2006) Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: experiments and computations. Acta Mater 54:119–130

    Article  CAS  Google Scholar 

  49. Kolli RP, Seidman DN (2008) The temporal evolution of the decomposition of a concentrated multicomponent FeCu based steel. Acta Mater 56:2073–2088

    Article  CAS  Google Scholar 

  50. Hyde JM, English CA (2001) In Lucas GE, Snead L, Kirk MA, Ellman RG (eds) Materials research society symposia proceedings, Warrendale

  51. Gault B, Moody MP, Cairney Julie M, Ringer SP (2012) Atom probe microscopy. Springer, Berlin

    Book  Google Scholar 

  52. Beeri O, Dunand DC, Seidman DN (2010) Roles of impurities on precipitation kinetics of dilute Al–Sc alloys. Mater Sci Eng A 527:3501–3509

    Article  Google Scholar 

  53. Ramunni VP (2014) Diffusion behavior in nickel–aluminum and aluminum–uranium diluted alloys. Comput Mater Sci 93:112–124

    Article  CAS  Google Scholar 

  54. Li ZS, Liu XJ, Wen MZ, Wang CP, Tang AT, Pan FS (2010) Thermodynamic assessments of the Al–Th and Th–Zn systems. J Nucl Mater 396:170–175

    Article  CAS  Google Scholar 

  55. Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN (2010) Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. acta Mater 58:5184–5195

    Article  CAS  Google Scholar 

  56. Forbord B, Lefebvre W, Danoix F, Hallem H, Marthinsen K (2004) Three dimensional atom probe investigation on the formation of Al3 (Sc, Zr)-dispersoids in aluminium alloys. Scripta Mater 51:333–337

    Article  CAS  Google Scholar 

  57. Kim K, Bobel A, Baik S-I, Walker M, Voorhees PW, Olson GB (2018) Enhanced coarsening resistance of Q-phase in aluminum alloys by the addition of slow diffusing solutes. Mater Sci Eng A 735:318–323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

APT was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The local-electrode atom probe (LEAP 5000 XS) tomograph at NUCAPT was acquired and upgraded with equipment grants from the MRI program of the National Science Foundation (Grant No. DMR-0420532) and the DURIP program of the Office of Naval Research (Grant Nos. N00014–0400798, N00014–0610539, N00014–0910781, N00014-1712870). NUCAPT is a Research Facility at the Materials Research Center of Northwestern University and received support through the National Science Foundation’s MRSEC program (Grant No. NSF DMR-1720139) and from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205). Additional instrumentation at NUCAPT was supported by the Initiative for Sustainability and Energy at Northwestern (ISEN). DNS and DCD disclose financial interests relative to Braidy Industries which could potentially benefit from the outcomes of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Il Baik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beeri, O., Baik, SI., Bram, A.I. et al. Effect of U and Th trace additions on the precipitation strengthening of Al–0.09Sc (at.%) alloy. J Mater Sci 54, 3485–3495 (2019). https://doi.org/10.1007/s10853-018-3036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3036-3

Keywords

Navigation