Skip to main content
Log in

CVD growth of zinc oxide thin films on graphene on insulator using a high-temperature platinum-catalyzed water beam

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The characteristics of zinc oxide (ZnO) films with different thicknesses grown on graphene, i.e., single-layer graphene (SLG) and multilayer graphene (MLG), on insulators at 500 °C using a reaction between dimethylzinc and high-temperature water generated by a catalytic reaction on Pt nanoparticles were investigated. The growth rate of continuous ZnO layer on MLG was higher than that of SLG. XRD patterns for the ZnO films exhibited an intense diffraction peak associated with (0002) plane and small ones associated with (10–10) and (10–11) planes, suggesting the grown hexagonal wurtzite ZnO is not perfectly along c-axis direction due to the nature of the used graphene structures. The FWHM values of the 2θ for ZnO (0002) were < 0.20° and 0.16° for ZnO on SLG and MLG, respectively. The photoluminescence at room temperature exhibited strong emission peak at 3.28 eV with no significant level of green emission indicating negligible defect density in the grown ZnO films. The results suggest that accurate optical bandgap cannot be determined from the transmittance spectra for the ZnO films with thickness and roughness higher than 1 µm and 20 nm, respectively. The results also suggest that the thickness of ZnO films should be below 1 µm in order to obtain acceptable level of transmittance in visible up to near infrared region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Takagi S, Sugiyama M, Yasuda T, Takenaka M (2009) Ge/III-V channel engineering for future CMOS. ECS Trans 19(5):9–20

    Article  CAS  Google Scholar 

  2. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  3. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA et al (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):151911

    Article  Google Scholar 

  4. Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng, B 80(1–3):383–387

    Article  Google Scholar 

  5. Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ (2011) Inverted polymer solar cells integrated with a low-temperature-annealed sol–gel-derived ZnO film as an electron transport layer. Adv Mater 23(14):1679–1683

    Article  CAS  Google Scholar 

  6. Yi GC, Wang C, Park WI (2005) ZnO nanorods: synthesis, characterization and applications. Semicond Sci Technol 20(4):S22

    Article  CAS  Google Scholar 

  7. Ahn MW, Park KS, Heo JH, Park JG, Kim DW, Choi KJ et al (2008) Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl Phys Lett 93(26):263103

    Article  Google Scholar 

  8. Ahmad NF, Yasui K, Hashim AM (2015) Seed/catalyst-free growth of zinc oxide on graphene by thermal evaporation: effects of substrate inclination angles and graphene thicknesses. Nanoscale Res Lett 10:10

    Article  Google Scholar 

  9. Ahmad NF, Rusli NI, Mahmood MR, Yasui K, Hashim AM (2014) Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation. Nanoscale Res Lett 9:120

    Article  Google Scholar 

  10. Ali AA, Hashim AM (2015) Evolution of zinc oxide nanostructures grown on graphene by ultrasonic spray pyrolysis and its statistical growth modelling. Nanoscale Res Lett 10:452

    Article  Google Scholar 

  11. Hambali NA, Yahaya H, Mahmood MR, Terasako T, Hashim AM (2014) Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature. Nanoscale Res Lett 9:609

    Article  Google Scholar 

  12. Hambali NA, Hashim AM (2015) Synthesis of zinc oxide nanostructures on graphene/glass substrate via electrochemical deposition: effects of potassium chloride and hexamethylenetetramine as supporting reagents. Nano Micro Letters 7(4):317–324

    Article  Google Scholar 

  13. Chang H, Sun Z, Ho KYF, Tao X, Yan F, Kwok WM, Zheng Z (2011) A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3(1):258–264

    Article  CAS  Google Scholar 

  14. Yi J, Lee JM, Park WI (2011) Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens Actuators B Chem 155(1):264–269

    Article  CAS  Google Scholar 

  15. Liu JY, Yu XX, Zhang GH, Wu YK, Zhang K, Pan N, Wang XP (2013) High performance ultraviolet photodetector fabricated with ZnO nanoparticles-graphene hybrid structures. Chin J Chem Phys 26(2):225

    Article  CAS  Google Scholar 

  16. Liu Q, Gong M, Cook B, Ewing D, Casper M, Stramel A, Wu J (2017) Transfer-free and printable graphene/ZnO-nanoparticle nanohybrid photodetectors with high performance. Journal of Materials Chemistry C 5(26):6427–6432

    Article  CAS  Google Scholar 

  17. Yang K, Xu C, Huang L, Zou L, Wang H (2011) Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide. Nanotechnology 22(40):405401

    Article  Google Scholar 

  18. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys: Condens Matter 16(25):R829

    CAS  Google Scholar 

  19. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20(4):S35

    Article  CAS  Google Scholar 

  20. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363

    Article  CAS  Google Scholar 

  21. Min Lee J, Yi J, Woo Lee W, Yong Jeong H, Jung T, Kim Y, Il Park W (2012) ZnO nanorods-graphene hybrid structures for enhanced current spreading and light extraction in GaN-based light emitting diodes. Appl Phys Lett 100(6):061107

    Article  Google Scholar 

  22. Park JS, Kim TW, Stryakhilev D, Lee JS, An SG, Pyo YS et al (2009) Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett 95(1):013503

    Article  Google Scholar 

  23. Aziz NSA, Mahmood MR, Yasui K, Hashim AM (2014) Seed/catalyst-free vertical growth of high-density electrodeposited zinc oxide nanostructures on a single-layer graphene. Nanoscale Res Lett 9(1):95

    Article  Google Scholar 

  24. Son DI, Yang HY, Kim TW, Park WI (2015) Transparent and flexible ultraviolet photodetectors based on colloidal ZnO quantum dot/graphene nanocomposites formed on poly (ethylene terephthalate) substrates. Compos Part B Eng 69:154–158

    Article  CAS  Google Scholar 

  25. Park JB, Oh H, Park J, Kim N-J, Yoon H, Yi G-C (2016) Scalable ZnO nanotube arrays grown on CVD-graphene films. APL Mater 4:106104

    Article  Google Scholar 

  26. Baek H, Kwak H, Song MS, Ha GE, Park J, Tchoe Y et al (2017) ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells. APL Mater 5:046106

    Article  Google Scholar 

  27. Park SI, Tchoe Y, Baek H, Heo J, Hyun JK, Jo J et al (2015) Growth and optical characteristics of high-quality ZnO thin films on graphene layers. APL Mater 3(1):016103

    Article  Google Scholar 

  28. Yasui K, Miura H, Nishiyama H (2011) Deposition of zinc oxide thin films using a surface reaction on platinum nanoparticles. MRS Online Proc Libr Arch. https://doi.org/10.1557/opl.2011.719

    Article  Google Scholar 

  29. Feng ZC (2012) Handbook of zinc oxide and related materials: volume one, materials. CRC Press, Boca Raton

    Book  Google Scholar 

  30. Zaman S, Mansoor M, Asim MM (2016) AFM investigation and optical band gap study of chemically deposited PbS thin films. In: IOP conference series: materials science and engineering, vol 146, no 1, IOP Publishing, p 012034

  31. Li Y, Men Y, Kong X, Gao Z, Han L, Li X (2018) Enhanced electrical properties of ZnO transparent conducting films prepared by electron beam annealing. Appl Surf Sci 428:191–198

    Article  CAS  Google Scholar 

  32. Srikant V, Clarke DR (1998) On the optical band gap of zinc oxide. J Appl Phys 83(10):5447–5451

    Article  CAS  Google Scholar 

  33. Abdulrahman AF, Ahmed SM, Almessiere MA (2017) Effect of the growth time on the optical properties of zno nanorods grown by low temperature method. Dig J Nanomater Biostruct 12(4):1001–1009

    Google Scholar 

  34. Schubert M (2004) Infrared ellipsometry on semiconductor layer structures: phonons, plasmons, and polaritons. Springer, Berlin, p 193

    Google Scholar 

  35. Kanauchi S, Ohashi Y, Ohishi K, Katagiri H, Tamayama Y, Kato T, Yasui K (2016) Effect of N2O-doped buffer layer on the optical properties of ZnO films grown on glass substrates using high-energy H2O generated by catalytic reaction. Jpn J Appl Phys 55(2S):02BC14

    Article  Google Scholar 

  36. Kato A, Ono S, Ikeda M, Tajima R, Adachi Y, Yasui K (2017) Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction. Thin Solid Films 644:29–32

    Article  CAS  Google Scholar 

  37. Morshed T, Kai Y, Matsumura R, Park J-H, Chikita H, Sadoh T, Hashim AM (2016) Formation of germanium (111) on graphene on insulator by rapid melting growth for novel germanium-on-insulator structure. Mater Lett 168:223–227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Muhamad thanks the Japan Student Service Organization (JASSO) and the Malaysia-Japan International Institute of Technology for the scholarships. The authors acknowledge financial support from the Malaysia-Japan International Institute of Technology, the Universiti Teknologi Malaysia, the Malaysia Ministry of Science, Technology and Innovation and the Malaysia Ministry of Education through various research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Manaf Hashim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhamad, A., Saito, T., Adachi, Y. et al. CVD growth of zinc oxide thin films on graphene on insulator using a high-temperature platinum-catalyzed water beam. J Mater Sci 54, 228–237 (2019). https://doi.org/10.1007/s10853-018-2825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2825-z

Keywords

Navigation