Skip to main content
Log in

Improving compressibility and thermal properties of Al–Al2O3 nanocomposites using Mg particles

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work presents an efficient technique to improve compressibility and thermal properties of Al–Al2O3 nanocomposites. The compressibility behavior was examined by cold compaction test, and the thermal conductivity was calculated through the measured electrical resistivity of the prepared samples. The results showed that the addition of Al2O3 to Al matrix improves the compressibility behavior of the produced nanocomposite. However, it has a negative effect on the thermal conductivity of the produced composite. Adding Al2O3 hard particles accelerates the fracturing process which improves the compressibility behavior. However, it causes some agglomeration at the grain boundaries which reduce the thermal conductivity. The addition of Mg to Al–Al2O3 nanocomposite improves both the compressibility behavior and the thermal conductivity. This is due to the great reduction in the particle size and the agglomeration of reinforcement particles on the grain boundaries which improve the compressibility behavior and the thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wagih A, Fathy A (2016) Experimental investigation and FE simulation of nano-indentation on Al–Al2O3 nanocomposites. Adv Powder Technol 27(2):403–410

    CAS  Google Scholar 

  2. Fathy A, Wagih A, Abd El-Hamid M, Hassan AA (2014) Effect of mechanical milling on the morphology and structural evaluation of Al–Al2O3 nanocomposite powders. Int J Eng Trans A Basics 27(4):625–632

    Google Scholar 

  3. Wang Q, Wang X, Yang Y, Fan Z (2009) Preparation of W-15 Ti prealloyed powders. Int J Refract Met Hard Mater 27:847–851

    CAS  Google Scholar 

  4. Al-Aqeeli N, Mendoza-Suarez G, Suryanarayana C, Drew R (2008) Development of new Al-based nanocomposites by mechanical alloying. Mater Sci Eng A 480:392–396

    Google Scholar 

  5. Wagih A (2015) Mechanical properties of Al–Mg/Al2O3 nanocomposite powder produced by mechanical alloying. Adv Powder Technol 26:253–258

    CAS  Google Scholar 

  6. Zhang D, Qin M, Rafi-Ud D, Zhang L, Qu X (2012) Fabrication and characterization of nanocrystalline Nb–W–Mo–Zr alloy powder by ball milling. Int J Refract Met Hard Mater 32:45–50

    Google Scholar 

  7. Enayati M, Aryanpour G, Ebnonnasir A (2009) Production of nanostructured WC–Co powder by ball milling. Int J Refract Met Hard Mater 27:159–163

    CAS  Google Scholar 

  8. Wagih A (2016) Synthesis of nanocrystalline Al2O3 reinforced Al nanocomposites by high-energy mechanical alloying: microstructural evolution and mechanical properties. Trans Indian Inst Met 69(4):851–857

    CAS  Google Scholar 

  9. Massalski TB (1991) Binary alloy phase diagrams. ASM International, Ohio, pp 170–172

    Google Scholar 

  10. Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr Mater 54(2):251–256

    CAS  Google Scholar 

  11. Gubicza J, Kassem M, Ribarik G (2004) The microstructure of mechanically alloyed Al–Mg determined by X-ray diffraction peak profile analysis. Mater Sci Eng A 372:115–122

    Google Scholar 

  12. Scudino S, Sakaliyska M, Surreddi KB, Eckert J (2009) Mechanical alloying and milling of Al–Mg alloys. J Alloy Compd 483:2–7

    CAS  Google Scholar 

  13. Crivello JC, Nobuki T, Kuji T (2007) Limits of the Mg–Al phase range by ball-milling. Intermetallics 15:1432–1437

    CAS  Google Scholar 

  14. Khakbiz M, Akhlaghi F (2009) Synthesis and structural characterization of Al–B4C nanocomposite powders by mechanical alloying. J Alloy Compd 479:334–341

    CAS  Google Scholar 

  15. Wagih A, Fathy A (2017) Experimental investigation and FE simulation of spherical indentation on nano-alumina reinforced copper-matrix composite produced by three different techniques. Adv Powder Technol 28:1954–1965

    CAS  Google Scholar 

  16. Wagih A, Fathy A, Ibrahim D, Elkady O, Hassan M (2018) Experimental investigation on strengthening mechanisms in Al-SiC nanocomposites and 3D FE simulation of Vickers indentation. J Alloy Compd 752:137–147

    CAS  Google Scholar 

  17. Fathy A, Elkady O, Abu-Oqail A (2017) Synthesis and characterization of Cu–ZrO2 nanocomposite produced by thermochemical process. J Alloy Compd 719:411–419

    CAS  Google Scholar 

  18. Ahmadian Baghbaderani H, Delshad Chermahini M (2012) Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying. Powder Technol 230:241–246

    CAS  Google Scholar 

  19. Fathy A, Sadoun A, Abdelhameed M (2014) Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites. Int J Adv Manuf Technol 73:1049–1056

    Google Scholar 

  20. Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58:383–502

    CAS  Google Scholar 

  21. Fogagnolo JB, Velasco F, Robert MH, Torralba JM (2003) Effect of mechanical alloying on the morphology, microstructure and properties of aluminum matrix composite powders. Mater Sci Eng A 342:131–143

    Google Scholar 

  22. Zebarjad SM, Sajjadi SA (2006) Microstructure evaluation of Al–Al2O3 composite produced by mechanical alloying method. Mater Des 27:684–688

    CAS  Google Scholar 

  23. El Mahallawy N, Fathy A, Abdelaziem W, Hassan M (2015) Microstructure evolution and mechanical properties of Al/Al–12%Si multilayer processed by accumulative roll bonding (ARB). Mater Sci Eng A 647:127–135

    Google Scholar 

  24. Fathy A, Omyma EK, Mohammed MM (2015) Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route. Trans Nonferrous Met Soc China 25(1):46–53

    CAS  Google Scholar 

  25. El-Kady Omyma, Fathy A (2014) Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des 54:348–353

    CAS  Google Scholar 

  26. Swarz ROPET (1989) Thermal boundary resistance. Rev Mod Phys 61(3):605–615

    Google Scholar 

  27. Furmanski P, Wisniewski TS, Banaszek J (2008) Thermal contact resistance and other thermal phenomena at solid-solid interface. ITC PW, Warszawa

    Google Scholar 

  28. Panelli R, Ambrosio Filho F (2001) A study of a new phenomenological compacting equation. Powder Technol 114:255–261

    CAS  Google Scholar 

  29. Wagih A, Fathy A, Sebaey TA (2016) Experimental investigation on the compressibility of Al/Al2O3 nanocomposites. Int J Mater Product Technol 52(3–4):312–323

    Google Scholar 

  30. Balshin M (1938) Theory of compacting. Vestn Metalloprom 18:124–137

    CAS  Google Scholar 

  31. Heckel R (1961) Density–pressure relationships in powder compaction. Trans Metall Soc AIME 221(4):671–675

    CAS  Google Scholar 

  32. Kawakita K, Ludde K (1971) Some considerations on powder compression equations. Powder Technol 4:61–68

    Google Scholar 

  33. Franz R, Wiedemann G (1853) Ueber die warme-leitungsahigkeit der metalle. Ann Phys 165(8):497–531

    Google Scholar 

  34. Tatar C, Zdemir NO (2010) Investigation of thermal conductivity and microstructure of the a-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC) by powder metallurgy method. Phys B 405:896–899

    CAS  Google Scholar 

  35. Adel Fathy (2018) Investigation on microstructure and properties of Cu–ZrO2 nanocomposites synthesized by in situ processing. Mater Lett 213:95–99

    Google Scholar 

  36. Raymond S (1983) Physics for scientists and engineers with modern physics, 3rd edn. Saunders College Publishing, Forth Worth

    Google Scholar 

  37. Fathy A, El-Kady O (2013) Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites. Mater Des 46:355–359

    CAS  Google Scholar 

  38. Zhao L, Zwick J, Lugscheider E (2003) The inuence of milling parameters on the properties of the milled powders and the resultant coatings. Surf Coat Technol 168(2):179–185

    CAS  Google Scholar 

  39. Saberi Y, Zebarjad S, Akbari G (2009) On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite. J Alloy Compd 484(1):637–640

    CAS  Google Scholar 

  40. Fathy A, Wagih A, El-Hamid MA, Hassan AA (2014) The effect of Mg add on morphology and mechanical properties of Al–xMg/10Al2O3 nanocomposite produced by mechanical alloying. Adv Powder Technol 25(4):1345–1350

    CAS  Google Scholar 

  41. Tekce HS, Kumlutas D, Tavman IH (2007) Effect of particle shape on thermal conductivity of copper reinforced polymer composites. J Reinf Plast Compos 26(1):113–121

    CAS  Google Scholar 

  42. Molina J, Narciso J, Weber L, Mortensen A, Louis E (2008) Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution. Mater Sci Eng A 480(1):483–488

    Google Scholar 

  43. Do Kim Y, Oh NL, Oh ST, Moon IH (2001) Thermal conductivity of W–Cu composites at various temperatures. Mater Lett 51(5):420–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wagih.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagih, A., Fathy, A. Improving compressibility and thermal properties of Al–Al2O3 nanocomposites using Mg particles. J Mater Sci 53, 11393–11402 (2018). https://doi.org/10.1007/s10853-018-2422-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2422-1

Keywords

Navigation