Skip to main content
Log in

The oxidase-like activity of hemin encapsulated by single-ring GroEL mutant and its application for colorimetric detection

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Supramolecular anchoring of metalloporphyrins in a protein is an attractive approach to the generation of artificial enzymes. Here, we employ the hydrophobic nanocage of single-ring mutant of bacterial GroEL protein for this purpose. We found that multiple monomeric hemin cofactors can be efficiently loaded into the protein nanocage. The as-prepared biohybrid possessed an oxidase-like catalytic activity and followed the typical Michaelis–Menten kinetics and a ping-pong mechanism in the H2O2-mediated oxidation of model substrates. In comparison with natural peroxidase, the artificial enzyme exhibited higher affinity for the model substrate. A simple and sensitive colorimetric method for the quantitative detection of H2O2 and glucose was also developed based on the artificial enzyme, with the detection limits determined to be 3.0 μM for H2O2 and 5.0 μM for glucose, respectively. The protein nanocage-based artificial enzyme is very flexible and is envisioned to be adapted readily for binding other metal complexes and catalysis of other reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Durrenberger M, Ward TR (2014) Recent achievments in the design and engineering of artificial metalloenzymes. Curr Opin Chem Biol 19:99–106

    Article  Google Scholar 

  2. Hocker B (2012) Protein design: a metalloenzyme reloaded. Nat Chem Biol 8(3):224–225

    Article  Google Scholar 

  3. Jeschek M, Reuter R, Heinisch T, Trindler C, Klehr J, Panke S, Ward TR (2016) Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537(7622):661–665

    Article  Google Scholar 

  4. Lin YH, Ren JS, Qu XG (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105

    Article  Google Scholar 

  5. Yu FT, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL (2014) Protein design: toward functional metalloenzymes. Chem Rev 114(7):3495–3578

    Article  Google Scholar 

  6. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  Google Scholar 

  7. Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R, Schroder HC, Muller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21(3):501–509

    Article  Google Scholar 

  8. Jampaiah D, Reddy TS, Kandjani AE, Selvakannan PR, Sabri YM, Coyle VE, Shukla R, Bhargava SK (2016) Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J Mater Chem B 4(22):3874–3885

    Article  Google Scholar 

  9. Li JN, Liu WQ, Wu XC, Gao XF (2015) Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48:37–44

    Article  Google Scholar 

  10. Liu J, Xin XY, Zhou H, Zhang SS (2015) A ternary composite based on graphene, hemin, and gold nanorods with high catalytic activity for the detection of cell-surface glycan expression. Chem Eur J 21(5):1908–1914

    Article  Google Scholar 

  11. Luo WJ, Zhu CF, Su S, Li D, He Y, Huang Q, Fan CH (2010) Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4(12):7451–7458

    Article  Google Scholar 

  12. Natalio F, Andre R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530–535

    Article  Google Scholar 

  13. Song YJ, Qu KG, Zhao C, Ren JS, Qu XG (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    Article  Google Scholar 

  14. Song YJ, Wang XH, Zhao C, Qu KG, Ren JS, Qu XG (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621

    Article  Google Scholar 

  15. Sun HJ, Zhao AD, Gao N, Li K, Ren JS, Qu XG (2015) Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Edit 54(24):7176–7180

    Article  Google Scholar 

  16. Tian T, Ai LH, Liu XM, Li LL, Li J, Jiang J (2015) Synthesis of hierarchical FeWO4 architectures with {100}-faceted nanosheet assemblies as a robust biomimetic catalyst. Ind Eng Chem Res 54(4):1171–1178

    Article  Google Scholar 

  17. Zheng XX, Liu Q, Jing C, Li Y, Li D, Luo WJ, Wen YQ, He Y, Huang Q, Long YT, Fan CH (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Edit 50(50):11994–11998

    Article  Google Scholar 

  18. Albada HB, Golub E, Willner I (2016) Rational design of supramolecular hemin/G-quadruplex-dopamine aptamer nucleoapzyme systems with superior catalytic performance. Chem Sci 7(5):3092–3101

    Article  Google Scholar 

  19. Mahy JP, Marechal JD, Ricoux R (2015) From “hemoabzymes” to “hemozymes”: towards new biocatalysts for selective oxidations. Chem Commun 51(13):2476–2494

    Article  Google Scholar 

  20. Qu R, Shen LL, Chai ZH, Jing C, Zhang YF, An YL, Shi LQ (2014) Hemin-block copolymer micelle as an artificial peroxidase and its applications in chromogenic detection and biocatalysis. ACS Appl Mater Int 6(21):19207–19216

    Article  Google Scholar 

  21. Wang QG, Yang ZM, Zhang XQ, Xiao XD, Chang CK, Xu B (2007) A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew Chem Int Edit 46(23):4285–4289

    Article  Google Scholar 

  22. Bos J, Browne WR, Driessen AJM, Roelfes G (2015) Supramolecular assembly of artificial metalloenzymes based on the dimeric protein LmrR as promiscuous scaffold. J Am Chem Soc 137(31):9796–9799

    Article  Google Scholar 

  23. Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41(1):62–76

    Article  Google Scholar 

  24. Krainer FW, Glieder A (2015) An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol 99(4):1611–1625

    Article  Google Scholar 

  25. Bode SA, Minten IJ, Nolte RJ, Cornelissen JJ (2011) Reactions inside nanoscale protein cages. Nanoscale 3(6):2376–2389

    Article  Google Scholar 

  26. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19(8):1025–1042

    Article  Google Scholar 

  27. Witus LS, Francis MB (2011) Using synthetically modified proteins to make new materials. Acc Chem Res 44(9):774–783

    Article  Google Scholar 

  28. Jutz G, van Rijn P, Miranda BS, Boker A (2015) Ferritin: a versatile building block for bionanotechnology. Chem Rev 115(4):1653–1701

    Article  Google Scholar 

  29. Jordan PC, Patterson DP, Saboda KN, Edwards EJ, Miettinen HM, Basu G, Thielges MC, Douglas T (2016) Self-assembling biomolecular catalysts for hydrogen production. Nat Chem 8(2):179–185

    Article  Google Scholar 

  30. Fiedler JD, Brown SD, Lau JL, Finn MG (2010) RNA-directed packaging of enzymes within virus-like particles. Angew Chem Int Edit 49(50):9648–9651

    Article  Google Scholar 

  31. Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83(4):577–587

    Article  Google Scholar 

  32. Wang XQ, Wang C, Pan MH, Wei JT, Jiang FP, Lu RS, Liu X, Huang YH, Huang F (2017) Chaperonin-nanocaged hemin as an artificial metalloenzyme for oxidation catalysis. ACS Appl Mater Int 9(30):25387–25396

    Article  Google Scholar 

  33. Chen Q, Chen J, Gao CJ, Zhang ML, Chen JY, Qiu HD (2015) Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst 140(8):2857–2863

    Article  Google Scholar 

  34. Jurow M, Schuckman AE, Batteas JD, Drain CM (2010) Porphyrins as molecular electronic components of functional devices. Coord Chem Rev 254(19–20):2297–2310

    Article  Google Scholar 

  35. Ryabova ES, Dikiy A, Hesslein AE, Bjerrum MJ, Ciurli S, Nordlander E (2004) Preparation and reactivity studies of synthetic microperoxidases containing b-type heme. J Biol Inorg Chem 9(4):385–395

    Article  Google Scholar 

  36. Hitomi Y, Hiramatsu K, Arakawa K, Takeyasu T, Hata M, Kodera M (2013) An iron(III) tetradentate monoamido complex as a nonheme iron-based peroxidase mimetic. Dalton Trans 42(36):12878–12882

    Article  Google Scholar 

  37. Porter DJ, Bright HJ (1983) The mechanism of oxidation of nitroalkanes by horseradish peroxidase. J Biol Chem 258(16):9913–9924

    Google Scholar 

  38. Cai SF, Han QS, Qi C, Lian Z, Jia XH, Yang R, Wang C (2016) Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 8(6):3685–3693

    Article  Google Scholar 

  39. Zhao K, Gu W, Zheng SS, Zhang CL, Xian YZ (2015) SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta 141:47–52

    Article  Google Scholar 

  40. Lin TR, Zhong LS, Guo LQ, Fu FF, Chen GN (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 6(20):11856–11862

    Article  Google Scholar 

  41. Shi WB, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47(23):6695–6697

    Article  Google Scholar 

  42. Mu JS, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48(19):2540–2542

    Article  Google Scholar 

  43. Qin FX, Jia SY, Wang FF, Wu SH, Song J, Liu Y (2013) Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection. Catal Sci Technol 3(10):2761–2768

    Article  Google Scholar 

  44. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254

    Article  Google Scholar 

  45. Zhang LH, Zhai YM, Gao N, Wen D, Dong SJ (2008) Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film. Electrochem Commun 10(10):1524–1526

    Article  Google Scholar 

  46. Chen Q, Liu ML, Zhao JN, Peng X, Chen XJ, Mi NX, Yin BD, Li HT, Zhang YY, Yao SZ (2014) Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose. Chem Commun 50(51):6771–6774

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21503278) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, B. & Liu, Z. The oxidase-like activity of hemin encapsulated by single-ring GroEL mutant and its application for colorimetric detection. J Mater Sci 53, 8786–8794 (2018). https://doi.org/10.1007/s10853-018-2215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2215-6

Keywords

Navigation