Skip to main content
Log in

TiN nanoparticles: synthesis and application as near-infrared photothermal agents for cancer therapy

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have developed TiN nanoparticles (NPs) as a novel near-infrared-activated photothermal agent. The effect of nitridation temperature on the optical property and photothermal performance of the TiN NPs were investigated. The nanoparticles nitrided at 1000 °C presented a significant absorption along the whole biological spectral range (i.e., for wavelengths above 700 nm). After coated with polystyrene sulfonate (PSS) and poly(diallyldimethylammonium chloride) (PDDA), they exhibited well-defined spherical morphology with average size of ~ 50 nm. We also demonstrated their therapeutic efficacy against SW1990 pancreatic cancer cells. The results indicated that the PSS/PDDA-coated TiN NPs offered several advantages including high photothermal conversion efficiency (44.6%), high photothermal stability, broad spectral tunability, low cytotoxicity and facile synthesis process. These features make TiN NPs promising alternative for use as a photothermal agent in cancer photothermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 120:1171–1176

    Article  Google Scholar 

  2. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28

    Article  Google Scholar 

  3. Jaque D, Maestro LM, Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Rodriguez EM, Solé JG (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494–9530

    Article  Google Scholar 

  4. Chen HB, Zhang J, Chang KW, Men XJ, Fang XF, Zhou LB, Li DL, Gao DY, Yin SY, Zhang XJ, Yuan Z, Wu CF (2017) Highly absorbing multispectral near-infrared polymer nanoparticles from one conjugated backbone for photoacoustic imaging and photothermal therapy. Biomaterials 528:42–52

    Article  Google Scholar 

  5. Maestro LM, Haro-González P, Rosal B, Ramiro J, Caamaño AJ, Carrasco E, Juarranz A, Sanz-Rodriguez F, Solé JG, Jaque D (2013) Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale 17:7882–7889

    Article  Google Scholar 

  6. Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4:710–711

    Article  Google Scholar 

  7. Barchiesi D, Kessentini S (2012) Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy. Biomed Opt Express 3:590–604

    Article  Google Scholar 

  8. Kang S, Bhang SH, Hwang S, Yoon JK, Song J, Jang HK, Kim S, Kim BS (2015) Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano 9:9678–9690

    Article  Google Scholar 

  9. Tang S, Chen M, Zheng N (2014) Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Small 10:3139–3144

    Article  Google Scholar 

  10. Zhou Z, Kong B, Yu C, Shi XY, Wang MW, Liu W, Sun YN, Zhang YJ, Yang H, Yang SP (2014) Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci Rep 41:3653–3662

    Google Scholar 

  11. Cheng L, Gong H, Zhu W, Liu J, Wang X, Liu G, Liu Z (2014) PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 35:9844–9852

    Article  Google Scholar 

  12. Zhou M, Li J, Liang S, Sood AK, Liang D, Li C (2015) CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano 9:7085–7096

    Article  Google Scholar 

  13. Robinson JT, Tabakman SM, Liang Y, Liang Y, Wang H, Casalonque HS, Vinh D, Dai H (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133:6825–6831

    Article  Google Scholar 

  14. Liu X, Lloyd MC, Fedorenko IV, Bapat P, Zhukov T, Huo Q (2008) Enhanced imaging and accelerated photothermalysis of A549 human lung cancer cells by gold nanospheres. Nanomedicine 3:617–626

    Article  Google Scholar 

  15. Shao J, Griffin RJ, Galanzha EI, Kim JW, Koonce N, Webber J, Mustafa T, Biris AS, Nedosekin DA, Zharov VP (2013) Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Sci Rep 3:1293–1301

    Article  Google Scholar 

  16. Gao YP, Li YS, Wang Y, Chen Y, Gu JL, Zhao WR, Ding J, Shi JL (2015) Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection. Small 11:77–83

    Article  Google Scholar 

  17. Zhang ZP, Xu SH, Wang Y, Yu YN, Li FZ, Zhu H, Shen YY, Huang ST, Guo SR (2017) Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J Colloid Interface Sci 509:47–57

    Article  Google Scholar 

  18. Zhou GY, Xiao H, Li XX, Huang Y, Song W, Song L, Chen MW, Cheng D, Shuai XT (2017) Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging. Acta Biomater 64:223–236

    Article  Google Scholar 

  19. Du Y, Jiang Q, Beziere N, Song LL, Zhang Q, Peng D, Chi CW, Yang X, Guo HB, Diot G, Ntziachristos V, Ding BQ, Tian J (2016) DNA-nanostructure-gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv Mater 28:10000–10007

    Article  Google Scholar 

  20. Yang DP, Liu X, Teng CP, Owh C, Win KY, Lin M, Loh XJ, Wu YL, Li ZB, Ye E (2017) Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy. Nanoscale 9:15753–15759

    Article  Google Scholar 

  21. Chen J, Sheng ZH, Li PH, Wu MX, Zhang N, Yu XF, Wang YW, Hu DH, Zheng HR, Wang GP (2017) Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. Nanoscale 9:11888–11901

    Article  Google Scholar 

  22. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333

    Article  Google Scholar 

  23. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671

    Article  Google Scholar 

  24. Bozich JS, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Klaper RD (2014) Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ Sci Nano 1:260–270

    Article  Google Scholar 

  25. Guler U, Shalaev VM, Boltasseva A (2015) Nanoparticle plasmonics: going practical with transition metal nitrides. Mater Today 18:227–237

    Article  Google Scholar 

  26. Guler U, Naik GV, Boltasseva A, Shalaev VM, Kildishev AV (2012) Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. Appl Phys B 107:285–291

    Article  Google Scholar 

  27. Reinholdt A, Pecenka R, Pinchuk A, Runte S, Stepanov AL, Weirich TE, Kreibig U (2004) Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles. Eur Phys J D 31:69–76

    Article  Google Scholar 

  28. Sun BM, Wu JR, Cui SB, Zhu HH, An W, Fu QG, Shao CW, Yao AH, Chen BD, Shi DL (2017) In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy. Nano Res 10:37–48

    Article  Google Scholar 

  29. Schneider T, Westermann M, Glei M (2017) In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Arch Toxicol 91:3517–3527

    Article  Google Scholar 

  30. Howell IR, Giroire B, Garcia A, Li S, Aymonier C, Watkins JJ (2018) Fabrication of plasmonic TiN nanostructures by nitridation of nanoimprinted TiO2 nanoparticles. J Mater Chem C 6:1399–1406

    Article  Google Scholar 

  31. Drygaš M, Czosnek C, Paine RT, Janik JF (2006) Two-stage aerosol synthesis of titanium nitride TiN and titanium oxynitride TiOxNy nanopowders of spherical particle morphology. Chem Mater 18:3122–3129

    Article  Google Scholar 

  32. Hoang S, Guo SW, Hahn NT, Bard AJ, Mullins CB (2012) Visible light driven photoelectronchemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett 12:26–32

    Article  Google Scholar 

  33. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  Google Scholar 

  34. Balogun MS, Yu MH, Li C, Zhai T, Liu Y, Lu XH, Tong YX (2014) Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. J Mater Chem A 2:10825–10829

    Article  Google Scholar 

  35. Kim BG, Jo CS, Shin J, Mun YD, Lee JW, Choi JW (2017) Ordered mesoporous titanium nitride as a promising carbon-free cathode for aprotic lithium-oxygen batteries. ACS Nano 11:1736–1746

    Article  Google Scholar 

  36. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  Google Scholar 

  37. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    Article  Google Scholar 

  38. Lin H, Gao SS, Dai C, Chen Y, Shi JL (2017) A two-dimensional biodegradable niobium carbide (Mxene) for photothermal tumor eradiation in NIR-I and NIR-II biowindows. J Am Chem Soc 139:16235–16247

    Article  Google Scholar 

  39. Liu PY, Miao ZH, Yang HJ, Zhen L, Xu CY (2018) Biocompatible Fe3+-TA coordination complex with high photothermal conversion efficiency for ablation of cancer cells. Colloids Surf B 167:183–190

    Article  Google Scholar 

  40. Liu YL (2018) Multifunctional nanoprobes: from design validation to biomedical applications. Springer Theses. Springer, Singapore

    Book  Google Scholar 

  41. Li ZB, Huang H, Tang SY, Li Y, Yu XF, Wang HY, Li PH, Sun ZB, Zhang H, Liu CL, Chu K (2016) Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 74:144–451

    Article  Google Scholar 

  42. Almada M, Leal-Martínez BH, Hassan N, Kogan MJ, Burboa MG, Topete A, Valdez MA, Juárez J (2017) Photothermal conversion efficiency and cytotoxic effect of gold nanorods stabilized with chitosan, alginate and poly(vinyl alcohol). Mater Sci Eng C 77:583–593

    Article  Google Scholar 

  43. Elshahawy W, Shohieb F, Yehia H, Etman W, Watanbe I, Kramer C (2014) Cytotoxic effect of elements released clinically from gold and CAD–CAM fabricated ceramic crowns. Tanta Dent J 11:189–193

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Research Funds for the Central Universities, National Natural Science Foundation of China (No. 50702037), Natural Science Foundation of Shanghai Municipality (No. 16ZR1400700) and Shanghai Health and Family Planning Commission Project (No. 2012y193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihua Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Fu, Q., Wei, H. et al. TiN nanoparticles: synthesis and application as near-infrared photothermal agents for cancer therapy. J Mater Sci 54, 5743–5756 (2019). https://doi.org/10.1007/s10853-018-03272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03272-z

Navigation