Skip to main content
Log in

Can nanoparticle toughen fiber-reinforced thermosetting polymers?

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstracts

Many tougheners have been developed for thermosetting resins. Numerous studies indicate that the mode-I fracture toughness of a thermosetting resin (GIC_Resin) can be effectively enhanced by rubber tougheners such as liquid rubber and core–shell rubber, and inorganic rigid particles such as silica, clay, carbon nanotubes, or graphene. Can these additives also toughen fiber-reinforced polymers (FRPs)? In particular, can they improve the mode-I interlaminar fracture toughness of FRPs (GIC_Comp)? To answer how much toughness improvement is transferred from resin to FRPs, we reviewed data from more than 50 publications related to interlaminar toughening. The performance of various types of tougheners in the resin and/or FRPs is summarized, and toughening mechanisms are also discussed. We found a wide range of improvement in fracture toughness in FRPs with the addition of nanoparticles, from negative improvement in some silica and carbon particle studies to an improvement ratio equal to that achieved in the resin. Overall, rubber tougheners are the most effective tougheners, but on average, only about 30% of the relative improvement in resin toughness translated to GIC_Comp increase. The enhancement in GIC_Comp after incorporating rigid particles tougheners is even less, but rigid particles do not decrease the strength and modulus of the final FRPs. Other toughening strategies, such as using multiple types of tougheners, and coating or depositing nanoparticle onto the fiber reinforcements are also discussed, and we suggest some strategies to design FRPs with optimal delamination resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hunston D (1984) Composite interlaminar fracture: effect of matrix fracture energy. J Compos Technol Res 6:176–180

    Article  CAS  Google Scholar 

  2. Bradley WL (1989) Understanding the translation of neat resin toughness into delamination toughness in composites. Key Eng Mater 37:161–198

    Article  Google Scholar 

  3. Tang YH, Ye L, Zhang Z, Friedrich K (2013) Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles: a review. Compos Sci Technol 86:26–37

    Article  CAS  Google Scholar 

  4. Hunston DL, Moulton RJ, Johnston NJ, Bascom W (1987) Matrix resin effects in composite delamination: mode I fracture aspects. In: Johnston NJ (ed) Toughened composites: symposium on toughened composites. ASTM International, Philadelphia, pp 77–94

    Google Scholar 

  5. Ngah SA, Taylor AC (2016) Toughening performance of glass fibre composites with core–shell rubber and silica nanoparticle modified matrices. Compos A Appl Sci Manuf 80:292–303

    Article  CAS  Google Scholar 

  6. Siddiqui NA, Woo RSC, Kim JK, Leung CCK, Munir A (2007) Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos A Appl Sci Manuf 38:449–460

    Article  CAS  Google Scholar 

  7. Kim JK, Baillie C, Poh J, Mai YW (1992) Fracture toughness of CFRP with modified epoxy resin matrices. Compos Sci Technol 43:283–297

    Article  CAS  Google Scholar 

  8. Hsieh TH, Kinloch AJ, Masania K, Lee JS, Taylor AC, Sprenger S (2010) The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45:1193–1210. https://doi.org/10.1007/s10853-009-4064-9

    Article  CAS  Google Scholar 

  9. DeCarli M, Kozielski K, Tian W, Varley R (2005) Toughening of a carbon fibre reinforced epoxy anhydride composite using an epoxy terminated hyperbranched modifier. Compos Sci Technol 65:2156–2166

    Article  CAS  Google Scholar 

  10. Compston P, Jar PYB, Burchill PJ, Takahashi K (2002) The transfer of matrix toughness to composite mode I interlaminar fracture toughness in glass–fibre/vinyl ester composites. Appl Compos Mater 9:291–314

    Article  CAS  Google Scholar 

  11. Friedrich K, Walter R, Carlsson LA, Smiley AJ, Gillespie JW (1989) Mechanisms for rate effects on interlaminar fracture toughness of carbon/epoxy and carbon/PEEK composites. J Mater Sci 24:3387–3398. https://doi.org/10.1007/BF01139070

    Article  CAS  Google Scholar 

  12. Hwang W, Han K (1989) Interlaminar fracture behavior and fiber bridging of glass-epoxy composite under mode I static and cyclic loadings. J Compos Mater 23:396–430

    Article  CAS  Google Scholar 

  13. Seyhan AT, Tanoglu M, Schulte K (2009) Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Mater Sci Eng A Struct 523:85–92

    Article  CAS  Google Scholar 

  14. Ratna D, Banthia AK (2004) Rubber toughened epoxy. Macromol Res 1:11–21

    Article  Google Scholar 

  15. Quan D, Ivankovic A (2015) Effect of core–shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 66:16–28

    Article  CAS  Google Scholar 

  16. Sober DJ (2007) Kaneka core–shell toughening systems for thermosetting resins. Kaneka Texas Corporation, Houston

    Google Scholar 

  17. Zeng Y, Liu H-Y, Mai Y-W, Du X-S (2012) Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Compos B Eng 43:90–94

    Article  CAS  Google Scholar 

  18. Dadfar M, Ghadami F (2013) Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites. Mater Des 47:16–20

    Article  CAS  Google Scholar 

  19. Tsai JL, Huang BH, Cheng YL (2009) Enhancing fracture toughness of glass/epoxy composites by using rubber particles together with silica nanoparticles. J Compos Mater 43:3107–3123

    Article  CAS  Google Scholar 

  20. Bagheri R, Marouf BT, Pearson RA (2009) Rubber-toughened epoxies: a critical review. Polym Rev 49:201–225

    Article  CAS  Google Scholar 

  21. Pearson RA, Yee AF (1986) Toughening mechanisms in elastomer-modified epoxies. J Mater Sci 21:2475–2488. https://doi.org/10.1007/BF01114294

    Article  CAS  Google Scholar 

  22. Yee AF, Li DM, Li XW (1993) The importance of constraint relief caused by rubber cavitation in the toughening of epoxy. J Mater Sci 28:6392–6398. https://doi.org/10.1007/BF01352202

    Article  CAS  Google Scholar 

  23. Declet-Perez C, Francis LF, Bates FS (2015) Deformation processes in block copolymer toughened epoxies. Macromolecules 48:3672–3684

    Article  CAS  Google Scholar 

  24. Collyer AA (2012) Rubber toughened engineering plastics. Springer, Berlin

    Google Scholar 

  25. Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S, Egan D (2006) The interlaminar toughness of carbon-fibre reinforced plastic composites using ‘hybrid-toughened’ matrices. J Mater Sci 41:5043–5046. https://doi.org/10.1007/s10853-006-0130-8

    Article  CAS  Google Scholar 

  26. Liu K, He S, Qian Y, An Q, Stein A, Macosko CW (2017) Nanoparticles in glass fiber-reinforced polyester composites: comparing toughening effects of modified graphene oxide and core–shell rubber. Polym Compos. https://doi.org/10.1002/pc.25065

    Article  Google Scholar 

  27. Klingler A, Sorochynska L, Wetzel B (2017) Toughening of glass fiber reinforced unsaturated polyester composites by core–shell particles. Key Eng Mater 742:74–81

    Article  Google Scholar 

  28. Ma J, Mo M-S, Du X-S, Rosso P, Friedrich K, Kuan H-C (2008) Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems. Polymer 49:3510–3523

    Article  CAS  Google Scholar 

  29. Kinloch A, Masania K, Taylor A, Sprenger S (2009) The fracture of nanosilica and rubber toughened epoxy fibre composites. In: Proceedings of ICCM

  30. Kinloch AJ, Masania K, Taylor AC, Sprenger S, Egan D (2008) The fracture of glass-fibre-reinforced epoxy composites using nanoparticle-modified matrices. J Mater Sci 43:1151–1154. https://doi.org/10.1007/s10853-007-2390-3

    Article  CAS  Google Scholar 

  31. Liang YL, Pearson RA (2010) The toughening mechanism in hybrid epoxy–silica–rubber nanocomposites (HESRNs). Polymer 51:4880–4890

    Article  CAS  Google Scholar 

  32. Sprenger S, Kothmann MH, Altstaedt V (2014) Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles. Compos Sci Technol 105:86–95

    Article  CAS  Google Scholar 

  33. Carolan D, Ivankovic A, Kinloch AJ, Sprenger S, Taylor AC (2017) Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices. J Mater Sci 52:1767–1788. https://doi.org/10.1007/s10853-016-0468-5

    Article  CAS  Google Scholar 

  34. Thostenson ET, Chou TW (2006) Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44:3022–3029

    Article  CAS  Google Scholar 

  35. Opelt CV, Becker D, Lepienski CM, Coelho LAF (2015) Reinforcement and toughening mechanisms in polymer nanocomposites–carbon nanotubes and aluminum oxide. Compos B Eng 75:119–126

    Article  CAS  Google Scholar 

  36. Mirjalili V, Hubert P (2010) Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification. Compos Sci Technol 70:1537–1543

    Article  CAS  Google Scholar 

  37. Eqra R, Janghorban K, Daneshmanesh H (2015) Mechanical properties and toughening mechanisms of epoxy/graphene nanocomposites. J Polym Eng 35:257–266

    CAS  Google Scholar 

  38. Chandrasekaran S, Sato N, Tolle F, Mulhaupt R, Fiedler B, Schulte K (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97:90–99

    Article  CAS  Google Scholar 

  39. Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials: a review of the current status. Nanoscale 7:10294–10329

    Article  CAS  Google Scholar 

  40. Rafiee MA, Rafiee J, Wang Z, Song HH, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  CAS  Google Scholar 

  41. Park YT, Qian YQ, Chan C, Suh T, Nejhad MG, Macosko CW, Stein A (2015) Epoxy toughening with low graphene loading. Adv Funct Mater 25:575–585

    Article  CAS  Google Scholar 

  42. Wichmann MH, Sumfleth J, Gojny FH, Quaresimin M, Fiedler B, Schulte K (2006) Glass-fibre-reinforced composites with enhanced mechanical and electrical properties–benefits and limitations of a nanoparticle modified matrix. Eng Fract Mech 73:2346–2359

    Article  Google Scholar 

  43. Kermansaravi M, Pol MH (2016) Experimental investigation on the effects of carbon nanotubes on mode I interlaminar fracture toughness of laminated composites. Polym Compos 39:E797–E806

    Article  CAS  Google Scholar 

  44. Seyhan AT, De la Vega A, Tanoglu M, Schulte K (2009) Thermal curing behavior of MWCNT modified vinyl ester‐polyester resin suspensions prepared with 3‐roll milling technique. J Polym Sci Pol Phys 47:1511–1522

    Article  CAS  Google Scholar 

  45. Menbari S, Ashori A, Rahmani H, Bahrami R (2016) Viscoelastic response and interlaminar delamination resistance of epoxy/glass fiber/functionalized graphene oxide multi-scale composites. Polym Test 54:186–195

    Article  CAS  Google Scholar 

  46. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  47. Pavlidou S, Papaspyrides CD (2008) A review on polymer—layered silicate nanocomposites. Prog Polym Sci 33:1119–1198

    Article  CAS  Google Scholar 

  48. Wang K, Chen L, Wu JS, Toh ML, He CB, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800

    Article  CAS  Google Scholar 

  49. Han JT, Cho K (2005) Layered silicate‐induced enhancement of fracture toughness of epoxy molding compounds over a wide temperature range. Macromol Mater Eng 290:1184–1191

    Article  CAS  Google Scholar 

  50. Liu TX, Tjiu WC, Tong YJ, He CB, Goh SS, Chung TS (2004) Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. J Appl Polym Sci 94:1236–1244

    Article  CAS  Google Scholar 

  51. Subramaniyan AK, Sun C (2008) Interlaminar fracture behavior of nanoclay reinforced glass fiber composites. J Compos Mater 42:2111–2122

    Article  CAS  Google Scholar 

  52. Chaudhry M, Czekanski A, Zhu Z (2017) Characterization of carbon nanotube enhanced interlaminar fracture toughness of woven carbon fiber reinforced polymer composites. Int J Mech Sci 131:480–489

    Article  Google Scholar 

  53. Kamar NT, Hossain MM, Khomenko A, Haq M, Drzal LT, Loos A (2015) Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos A Appl Sci Manuf 70:82–92

    Article  CAS  Google Scholar 

  54. Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat Mater 5:457–462

    Article  CAS  Google Scholar 

  55. An Q, Rider AN, Thostenson ET (2013) Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers. ACS Appl Mater Inter 5:2022–2032

    Article  CAS  Google Scholar 

  56. An Q, Rider AN, Thostenson ET (2012) Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50:4130–4143

    Article  CAS  Google Scholar 

  57. Mouritz AP (2007) Review of z-pinned composite laminates. Compos A Appl Sci Manuf 12:2383–2397

    Article  CAS  Google Scholar 

  58. Mouritz AP, Baini C, Herszberg I (1999) Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites. Compos A Appl Sci Manuf 7:859–870

    Article  Google Scholar 

  59. Beckermann GW, Pickering KL (2015) Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils. Compos A Appl Sci Manuf 72:11–21

    Article  CAS  Google Scholar 

  60. Inam F, Wong DW, Kuwata M, Peijs T (2010) Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. J Nanomater. https://doi.org/10.1155/2010/453420

    Article  Google Scholar 

  61. Sager RJ, Klein PJ, Davis DC, Lagoudas DC, Warren GL, Sue HJ (2011) Interlaminar fracture toughness of woven fabric composite laminates with carbon nanotube/epoxy interleaf films. J Appl Polym Sci 121:2394–2405

    Article  CAS  Google Scholar 

  62. Phonthammachai N, Li X, Wong S, Chia HL, Tjiu WW, He CB (2011) Fabrication of CFRP from high performance clay/epoxy nanocomposite: preparation conditions, thermal–mechanical properties and interlaminar fracture characteristics. Compos A Appl Sci Manuf 42:881–887

    Article  CAS  Google Scholar 

  63. Quaresimin M, Varley RJ (2008) Understanding the effect of nano-modifier addition upon the properties of fibre reinforced laminates. Compos Sci Technol 68:718–726

    Article  CAS  Google Scholar 

  64. Domun N, Paton KR, Hadavinia H, Sainsbury T, Zhang T, Mohamud H (2017) Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers. Materials 10:1179. https://doi.org/10.3390/ma10101179

    Article  CAS  Google Scholar 

  65. Deng S, Ye L (1999) Influence of fiber-matrix adhesion on mechanical properties of graphite/epoxy composites: II. Interlaminar fracture and inplane shear behavior. J Reinf Plast Compos 18:1041–1057

    Article  CAS  Google Scholar 

  66. Madhukar MS, Drzal LT (1992) Fiber-matrix adhesion and its effect on composite mechanical properties: IV. Mode I and mode II fracture toughness of graphite/epoxy composites. J Compos Mater 26:936–968

    Article  CAS  Google Scholar 

  67. Chua PS, Piggott MR (1985) The glass fibre—polymer interface: I—theoretical consideration for single fibre pull-out tests. Compos Sci Technol 22:33–42

    Article  CAS  Google Scholar 

  68. Cui HY, Kessler MR (2012) Glass fiber reinforced ROMP-based bio-renewable polymers: enhancement of the interface with silane coupling agents. Compos Sci Technol 72:1264–1272

    Article  CAS  Google Scholar 

  69. Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91:6034–6037

    Article  CAS  Google Scholar 

  70. Zhou XF, Wagner HD, Nutt SR (2001) Interfacial properties of polymer composites measured by push-out and fragmentation tests. Compos A Appl Sci Manuf 32:1543–1551

    Article  Google Scholar 

  71. Herrerafranco PJ, Drzal LT (1992) Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites 23:2–27

    Article  CAS  Google Scholar 

  72. Balaguru PN, Nanni A, Giancaspro J (2009) FRP composites for reinforced and prestressed concrete structures: a guide to fundamentals and design for repair and retrofit. Taylor & Francis, New York

    Google Scholar 

  73. Hyer MW, White SR (1998) Stress analysis of fiber-reinforced composite materials. WCB McGraw-Hill, Boston

    Google Scholar 

  74. Drzal LT, Madhukar M (1993) Fibre-matrix adhesion and its relationship to composite mechanical properties. J Mater Sci 28:569–610. https://doi.org/10.1007/BF01151234

    Article  CAS  Google Scholar 

  75. Miller NA, Stirling CD (2001) Effects of ATBN rubber additions on the fracture toughness of unsaturated polyester resin. Polym Polym Compos 9:31–36

    CAS  Google Scholar 

  76. Liu LQ, Li LY, Gao Y, Tang LC, Zhang Z (2013) Single carbon fiber fracture embedded in an epoxy matrix modified by nanoparticles. Compos Sci Technol 77:101–109

    Article  CAS  Google Scholar 

  77. Dorigato A, Morandi S, Pegoretti A (2012) Effect of nanoclay addition on the fiber/matrix adhesion in epoxy/glass composites. J Compos Mater 46:1439–1451

    Article  CAS  Google Scholar 

  78. Peters L (2018) Influence of glass fibre sizing and storage conditions on composite properties. In: Davies P, Rajapakse YD (eds) Durability of composites in a marine environment 2. Springer, Dordrecht, pp 19–31

    Chapter  Google Scholar 

  79. Schultheisz CR, McDonough WG, Kondagunta S, Schutte CL, Macturk KS, McAuliffe M, Hunston DL (1997) Effect of moisture on E-glass/epoxy interfacial and fiber strengths. In: Hopper SD (ed) Composite materials: testing and design, vol 13. ASTM International, Philadelphia, pp 257–286

    Google Scholar 

  80. Jordan WM, Bradley WL, Moulton RJ (1989) Relating resin mechanical properties to composite delamination fracture toughness. J Compos Mater 23:923–943

    Article  CAS  Google Scholar 

  81. Drzal LT (1990) The role of the fiber-matrix interphase on composite properties. Vacuum 41:1615–1618

    Article  CAS  Google Scholar 

  82. Pegoretti A, Accorsi ML, Dibenedetto AT (1996) Fracture toughness of the fibre-matrix interface in glass-epoxy composites. J Mater Sci 31:6145–6153. https://doi.org/10.1007/BF00354431

    Article  CAS  Google Scholar 

  83. Drzal LT (1990) Fiber-matrix interphase structure and its effect on adhesion and composite mechanical properties. In: Ishida H (ed) Controlled interphases in composite materials. Elsevier, Amsterdam, pp 309–320

    Chapter  Google Scholar 

  84. Bennett J, Young R (1998) The effect of fibre-matrix adhesion upon crack bridging in fibre reinforced composites. Compos A Appl Sci Manuf 29:1071–1081

    Article  Google Scholar 

  85. Polaha JJ, Davidson BD, Hudson RC (1996) Effects of mode ratio, ply orientation and precracking on the delamination toughness of a laminated composite. Pieracci A 2:141–173

    Google Scholar 

Download references

Acknowledgements

This research was funded by Adama Materials. The authors thank the reviewers for helpful comments and Dr. Siyao He for his valuable discussions and guidance in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Macosko.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Macosko, C.W. Can nanoparticle toughen fiber-reinforced thermosetting polymers?. J Mater Sci 54, 4471–4483 (2019). https://doi.org/10.1007/s10853-018-03195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03195-9

Keywords

Navigation