Skip to main content
Log in

Preparation and characterization of photocatalytic TiO2 films on functionalized stainless steel

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, TiO2 was synthesized using controlled hydrolysis of TiCl4, followed by dialysis. We produced a transparent emulsion that was later dried into TiO2 powder. TiO2 photocatalyst films were deposited applying the technique of pulsed electrophoretic deposition, which decreased bubble formation caused by direct current. The substrates were bare stainless steel (SS) and stainless steel pre-functionalized in a conversion bath. Film surface morphology, crystallinity, elemental composition, and wettability were determined using XRD, SEM–EDAX, and contact angle measurements. The mechanical properties were determined by nano-indentation test. The adhesion was investigated using scratch test. The obtained results showed that the TiO2 film over a conversion layer had better adhesion and mechanical properties than TiO2 over bare SS. The optical characteristics of TiO2 films were tested using PL measurement. The photocatalytic decolourization of the amido black-10B dye was studied over TiO2 coating under UV and visible light irradiation. TiO2 film over a conversion layer without heat treatment exhibited the best photocatalytic activity as a result of its crystalline size and three-phase structure as well as the synergetic effect of TiO2 and Fe2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Abbreviations

PL:

Photoluminescence

W B :

Brookite mass fraction

W R :

Rutile mass fraction

W A :

Anatase mass fraction

D B :

Brookite diameter

D R :

Rutile diameter

D A :

Anatase diameter

COD:

Chemical oxygen demand

AB-10B:

Amido black-10B

A A :

Anatase intensity

A B :

Brookite intensity

AB:

Amido black

E :

Young’s modulus

H :

Hardness

SS:

Stainless steel

CL:

Conversion layer

DC:

Direct current

L C :

Load charge

EPD:

Electrophoretic deposition

Pulsed EPD:

Pulsed electrophoretic deposition

A R :

Rutile intensity

References

  1. Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Hasnain IM (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36

    Article  Google Scholar 

  2. Grätzel M (2001) Review article: photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  3. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  Google Scholar 

  4. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi TM (1997) Watanabe light-induced amphiphilic surfaces. Nature 388:431–432

    Article  Google Scholar 

  5. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  Google Scholar 

  6. Ismail M, Bousselmi L (2010) Effect of adsorption on the photocatalysis performance of anthraquinone dye. Water Sci Technol 61:2539–2548

    Article  Google Scholar 

  7. Bousselmi L, Geissen SU, Schroeder H (2004) Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia. Water Sci Technol 49:331–337

    Google Scholar 

  8. Wang XT, Wei QY, Zhang L, Sun HF, Li H, Zhang QX (2016) CdTe/TiO2 nanocomposite material for photogenerated cathodic protection of 304 stainless steel. Mater Sci Eng, B 208:22–28

    Article  Google Scholar 

  9. Zhang L, Wang XT, Liu FG, Sun HF, Li H, Wei QY, Hou BR (2015) Photogenerated cathodic protection of 304ss by ZnSe/TiO2 NTs under visible light. Mater Lett 143:116–119

    Article  Google Scholar 

  10. Tomaszek R, Pawlowski L, Gengembre L, Laureyns J, Znamirowski Z, Zdanowski J (2006) Microstructural characterization of plasma sprayed TiO2 functional coating with gradient of crystal grain size. Surf Coat Technol 201:45–56

    Article  Google Scholar 

  11. Shi P, Ng WF, Wong MH, Cheng FT (2009) Improvement of corrosion resistance of pure magnesium in Hanks’ solution by microarc oxidation with sol–gel TiO2 sealing. J Alloy Compd 469:286–292

    Article  Google Scholar 

  12. Santillan MJ, Quaranta N, Boccaccini AR (2010) Titania and titania–silver nanocomposite coatings grown by electrophoretic deposition from aqueous suspensions. Surf Coat Technol 205:2562–2571

    Article  Google Scholar 

  13. Sun Y, Zhitomirsky I (2012) Electrophoretic deposition of titanium dioxide using organic acids as charging additives. Mater Lett 73:190–193

    Article  Google Scholar 

  14. Tang F, Uchikoshi T, Ozawa K, Sakka Y (2006) Effect of polyethylenimine on the dispersion and electrophoretic deposition of nano-sized titania aqueous suspensions. J Eur Ceram Soc 26:1555–1560

    Article  Google Scholar 

  15. Besra L, Uchikoshi T, Suzuki TS, Sakka Y (2008) Bubble-free aqueous electrophoretic deposition (EPD) by pulse-potential application. J Am Ceram Soc 91:3154

    Article  Google Scholar 

  16. Laamari M, Ben Youssef A, Bousselmi L (2016) TiO2 photoanodes developed by cathodic electrophoretic deposition in aqueous media: effect of the applied voltage. J Adv Oxid Technol 19:165–170

    Google Scholar 

  17. Laamari M, Ben Youssef A, Bousselmi L (2016) TiO2 electrophoretic deposition of titanium dioxide films on cooper in aqueous media. Water Sci Technol 74(2):424–430

    Article  Google Scholar 

  18. Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52:1–61

    Article  Google Scholar 

  19. Wang S, Huang B (2008) Field emission properties of Ag/SiO2/carbon nanotube films by pulsed voltage co-electrophoretic deposition. Thin Solid Film 517:1245–1250

    Article  Google Scholar 

  20. Naim MN, Kuwata M, Kamiya H, Lenggoro IW (2009) Deposition of TiO2 nanoparticles in surfactant-containing aqueous suspension by a pulsed DC charging-mode electrophoresis. J Ceram Soc Jpn 117:127–132

    Article  Google Scholar 

  21. Naim MN, Kuwata M, Kamiya H, Lenggoro IW (2010) Electrophoretic packing structure from aqueous nanoparticle suspension in pulse DC charging. Colloids Surf A 360:13–19

    Article  Google Scholar 

  22. Santillán MJ, Membrives F, Quaranta N, Boccaccini AR (2008) Characterization of TiO2 nanoparticle suspensions for electrophoretic deposition. J Nanopart Res 10:787

    Article  Google Scholar 

  23. Lin CK, Yang TJ, Feng YC, Tsung TT, Su CY (2006) Characterization of elecrophoretically deposited nanocrystalline titanium dioxide films. Surf Coat Technol 200:3184

    Article  Google Scholar 

  24. Dor S, Rühle S, Ofir S, Adler M, Grinis L, Zaban A (2009) The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates. Colloids Surf A 342(1–3):70

    Article  Google Scholar 

  25. Tan W, Yin X, Zhou X, Zhang J, Xiao X, Lin Y (2009) Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells. Electrochim Chem Acta 54(19):4467–4472

    Article  Google Scholar 

  26. Lebrette S, Pagnoux C, Abélard P (2004) Stability of aqueous TiO2 suspensions: influence of ethanol. J Colloid Interface Sci 280:400

    Article  Google Scholar 

  27. Lebrette S, Pagnoux C, Abélard P (2006) Fabrication of titania dense layers by electrophoretic deposition in aqueous media. J Eur Ceram Soc 26:2727

    Article  Google Scholar 

  28. Hanaor D, Michelazzi M, Veronesi P, Leonelli C, Romagnoli M, Sorrell C (2011) Anodic aqueous electrophoretic deposition of titanium dioxide using carboxylic acids as dispersing agents. J Eur Ceram Soc 31:1041–1047

    Article  Google Scholar 

  29. Shan CX, Hou X, Choy KL (2008) Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition. Surf Coat Technol 202:2399–2402

    Article  Google Scholar 

  30. Krishna DSR, Sun Y, Chena Z (2011) Magnetron sputtered TiO2 films on a stainless steel substrate: Selective rutile phase formation and its tribological and anti-corrosion performance. Thin Solid Films 519:4860–4864

    Article  Google Scholar 

  31. Ribeiro R, Sousa M, Araújo FO, Costa JAP, Nishimoto A, Viana BC, Jr, Alves C (2016) Deposition of TiO2 film on duplex stainless steel substrate using the cathodic cage plasma technique. Mater Res 19:1207–1212

    Article  Google Scholar 

  32. Foruzanmehr M, Hosainalipour SM, Tehrani SM, Aghaeipour M (2014) Nano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility Improvement. Nanomed J 1:128–136

    Google Scholar 

  33. Nurhayati E, Yang H, Chen C, Liu C, Juang Y, Huang C, Hu C (2016) Electro-photocatalytic fenton decolorization of orange G using mesoporous TiO2/stainless steel mesh photo-electrode prepared by the sol-gel dip-coating method. Int J Electrochem Sci 11:3615–3632

    Article  Google Scholar 

  34. Bamoulid L, Maurette MT, De Caro D, Beb Bachir A, Aries L, El Hajjaji S, Benoît-Marquié F, Ansart F (2008) An efficient protection of stainless steel against corrosion: combination of a conversion layer and titanium dioxide deposit. J Surf Coat Technol 202:520–5026

    Article  Google Scholar 

  35. You X, Chen F, Zhang J (2005) Effects of calcination on the physical and photocatalytic properties of TiO2 powders prepared by sol-gel template method. J Sol Gel Sci Technol 34:181–187

    Article  Google Scholar 

  36. Moser J, Gratzel M (1982) Photochemistry with colloidal semiconductors. Laser studies of halide oxidation in colloidal dispersions of TiO2 and α-Fe2O3. Helv Chim Acta 65:1436–1444

    Article  Google Scholar 

  37. Moser J, Gratzel M (1983) Light-induced electron transfer in colloidal semiconductor dispersions: single vs. dielectronic reduction of acceptors by conduction-band electrons. J Am Chem Soc 105:6547–6555

    Article  Google Scholar 

  38. Cordero-Arias L, Cabanas-Polo S, Gilabert J, Goudouri OM, Sanchez E, Virtanen S, Boccaccini AR (2014) Electrophoretic deposition of nanostructured TiO2/alginate and TiO2-bioactive glass/alginate composite coatings on stainless steel. Adv Appl Ceram 113:42–49

    Article  Google Scholar 

  39. Bakardjieva S, Stengl V, Szatmary L, Subrt J, Lukac J, Murafa N, Niznansky D, Cizek K, Jirkovsky J, Petrova N (2006) Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity. J Mater Chem 16:1709–1716

    Article  Google Scholar 

  40. Ipaz L, Caicedo JC, Esteve J, Espinoza-Beltran FJ, Zambrano G (2012) Improvement of mechanical and tribological properties in steel surfaces by using titanium–aluminium/20 titanium–aluminium nitride multilayered system. Appl Surf Sci 258:3805–3814

    Article  Google Scholar 

  41. Maleki SA, Mirzaeia M, Azimia A (2015) COD reduction by TiO2/graphene photocatalytic treatment of ethylene dichloride in wastewater. Desalin Water Treat 57:13207–13212

    Article  Google Scholar 

  42. Hsu HC, Cheng CS, Chang CC, Yang S, Chang CS, Hsieh WF (2005) Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates. Nanotechnology 16:297–301

    Article  Google Scholar 

  43. Boukhachem A, Ouni B, Karyaoui M, Madani A, Chtourou R, Amlouk M (2012) Structural, opto-thermal and electrical properties of ZnO: Mo sprayed thin films. Mater Sci Semicond Process 15:282–292

    Article  Google Scholar 

  44. Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487

    Article  Google Scholar 

  45. Li W, Ni C, Lin H, Huang CP, Ismat Shah S (2004) Size dependence of thermal stability of TiO2 nanoparticles. J Appl Phys 96:6663

    Article  Google Scholar 

  46. Zhang WF, He YL, Zhang MS, Yin Z, Chen Q (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33:912

    Article  Google Scholar 

  47. Zhang J, Li M, Feng Z, Chen J, Li C (2006) UV raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem 110:927

    Article  Google Scholar 

  48. Wang L, Egerton T (2012) The effect of transition metal on the optical properties and photoactivity of nano-particulate titanium dioxide. J Mater Science Res 1:19–27. https://doi.org/10.5539/jmsr.v1n4p19

    Google Scholar 

  49. Ould-Chikh S, Proux O, Afanasiev P, Khrouz L, Hedhili MN, Anjum DH, Harb M, Geantet C, Basset JM, Puzenat E (2014) Photocatalysis with chromium-doped TiO2: bulk and surface doping. Chemsuschem 7:1361–1371

    Article  Google Scholar 

  50. Zhu J, Chen F, Zhang J, Chen H, Anpo M (2006) Fe3+–TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J Photochem Photobiol, A 18:196–204

    Article  Google Scholar 

  51. Zhu J, Zheng W, He B, Zhang J, Anpo M (2004) Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A: Chem 216:35–43

    Article  Google Scholar 

  52. Yung LC, Fei CC, Mandeep JC, Amin N, Laic KW (2015) Bulk substrate porosity verification by applying Monte Carlo modeling and Castaing’s formula using energy-dispersive X-rays. J Electron Imaging 24:061105

    Article  Google Scholar 

  53. El-Hossary FM, Negm NZ, Khalil SM, Abed El-Rahman AM, Raaif M, Mändl S (2010) Effect of annealing temperature on hardness, thickness and phase structure of carbonitrided 304 stainless steel. Appl Phys A 99:489–495

    Article  Google Scholar 

  54. Yoo DJ, Tamaki J, Park SJ, Miura N, Yamazoe N (1995) Effects of thickness and calcination temperature on tin dioxide sol-derived thin-film senso. J Electrochem Soc 142:105–107

    Article  Google Scholar 

  55. Mechiakh R, Ben Sedrine N, Ben Naceur J, Chtourou R (2011) Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol–gel dip-coating. Surf Coat Technol 206(2–3):243–249

    Article  Google Scholar 

  56. Bakri AS, Sahdan MZ, Adriyanto FN, Raship NA, Said NDM, Abdullah SA, Rahim MS (2017) Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. Am Inst Phys 1788:030030

    Google Scholar 

  57. Kim KD, Pfadler T, Zimmermann E, Feng Y, Dorman JA, Weickert J, Schmidt-Mende L (2015) Decoupling optical and electronic optimization of organic solar cells using high performance temperature-stable TiO2/Ag/TiO2 electrodes. Appl Mater 3:106105

    Article  Google Scholar 

  58. Sedghi A, Miankushki HN (2015) The effect of drying and thickness of TiO2 electrodes on the photovoltaic performance of dye-sensitized solar cells. Int J Electrochem Sci 10:3354–3362

    Google Scholar 

  59. Domtau DL, Simiyu J, Ayieta EO, Muthoka B, Mwabora JM (2016) Optical and electrical properties dependence on thickness of screen-printed TiO2 thin films. J Mater Phys Chem 4:1–3

    Google Scholar 

  60. Gaillard Y, Rico YJ, Jimenez-Pique E, González-Elipe AR (2009) Nanoindentation of TiO2 thin films with different microstructures. J Phys D Appl Phys 42(14):145305–145314

    Article  Google Scholar 

  61. Yaghoubi H, Taghavinia N, Keshavarz Alamdari E, Volinsky AA (2010) Nanomechanical properties of TiO2 granular thin films. ACS Appl Mater Interfaces 2(9):2629–2636

    Article  Google Scholar 

  62. Dukhyun C, Sangmin L, Changwoo L, Pyungsoo L, Junghyun L, Kunhong L, Hyunchul P, Woonbong H (2007) Dependence of the mechanical properties of nanohoneycomb structures on porosity. J Micromech Microeng 17:501

    Article  Google Scholar 

  63. Sanders PG, Eastman JA, Weertman JR (1997) Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater 45:4019–4025

    Article  Google Scholar 

  64. Vaz F, Machado P, Rebouta L, Cerqueira P, Goudeau PH, Rivière JP, Alves E, Pischow K, Rijk J (2003) Mechanical characterization of reactively magnetron-sputtered TiN films. Surf Coat Technol 174–175:375–382

    Article  Google Scholar 

  65. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564

    Article  Google Scholar 

  66. Yu J, Zhao X, Yu JC, Zhong G, Han J, Zhao Q (2001) The grain size and surface hydroxyl content of superhydrophilic TiO2/SiO2 composite nanometer thin films. J Mater Sci Lett 20:1745–1748

    Article  Google Scholar 

  67. Sirghi L (2016) Plasma synthesis of photocatalytic TiOx thin films. Plasma Sources Sci Technol 25:33003–33016

    Article  Google Scholar 

  68. Kobayashi T, Konishi S (2015) TiO2 patterns with wide photo-induced wettability change by a combination of reactive sputtering process and surface modification in a microfluidic channel. J Micromech Microeng 25:115014–115026

    Article  Google Scholar 

  69. Kolouch A, Horáková M, Hájková P, Heyduková E, Exnar P, Apatenka P (2006) Relationship between photocatalytic activity, hydrophilicity and photoelectric properties of TiO2 thin films. Probl At Sci Technol 6:198–200

    Google Scholar 

  70. Mathew S, Amit KP, Thomas B, Rakesh PP, Misha H, Libish TM, Radhakrishnan P, Nampoori VP, Vallabhan CP (2012) UV-visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method. J Fluoresc 22:1563

    Article  Google Scholar 

  71. Mattioli G, Filippone F, Alippi P, Bonapasta AM (2008) Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO2. Phys Rev B 78:241201-1–241201-4

    Article  Google Scholar 

  72. Zhou J, Zhang Y, Zhao XS, Ray AK (2006) Photodegradation of benzoic acid over metal-doped TiO2. Ind Eng Chem Res 45:3503

    Article  Google Scholar 

  73. Liu B, Zhao X, Zhang N, Zhao Q, He X, Feng J (2005) Photocatalytic mechanism of TiO2–CeO2 films prepared by magnetron sputtering under UV and visible light. Surf Sci 595:203

    Article  Google Scholar 

  74. Liu B, Wen L, Zhao X (2007) The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering. Mater Chem Phys 106:350

    Article  Google Scholar 

  75. Chang CH, Liu CH, Chen C, Cheng HE, Luc TC (2012) The differences in optical characteristics of TiO2 and TiO2/AAO nanotube arrays fabricated by atomic layer deposition. J Electrochem Soc 159:136–140

    Article  Google Scholar 

  76. Preclikova J, Galar P, Trojanek F, Danis S, Rezek B, Gregora I, Němcová Y, Malý P (2010) Nanocrystalline titanium dioxide films: influence of ambient conditions on surface and volume related photoluminescence. J Appl Phys 108:113502

    Article  Google Scholar 

  77. Liu J, Li J, Sedhain A, Lin J, Jiang H (2008) Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. J Phys Chem C 112:17127

    Article  Google Scholar 

  78. Sadeghzadeh-Attar A (2016) Structural and optical characteristic of single crystal rutile–titania nanowire arrays prepared in alumina membranes. Mater Chem Phys 1–7

  79. Klubnuan S, Suwanboon S, Amornpitoksuk P (2016) Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method. Opt Mater 53:134–141

    Article  Google Scholar 

  80. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107:13871–13879

    Article  Google Scholar 

  81. Rashed MN, El-Amin ZZ (2007) Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. Int J Phys Sci 2:73

    Google Scholar 

  82. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735

    Article  Google Scholar 

  83. Liu H, Cheng S, Wu M, Wu H, Zhang J, Li W, Cao C (2000) Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation. J Phys Chem A 104:7016–7020

    Article  Google Scholar 

  84. Banisharif A, Khodadadi AA, Mortazavi Y, Firooz AA, Beheshtian J, Agaha S, Menbari S (2015) Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: experimental and computational studies. Appl Catal B 165:209–221

    Article  Google Scholar 

  85. Wang M, Pyeon M, Gönüllü Y, Kaouk A, Shen S, Guo L, Mathur S (2015) Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting. Nanoscale 7(22):10094–10100

    Article  Google Scholar 

  86. Noh E, Noh KJ, Yun KS, Kim BR, Jeonh HJ, Oh HJ, Jung SC, Kang WS, Kim SJ (2013) Enhanced water splitting by Fe2O3–TiO2–FTO photoanode with modified energy band structure. Sci World J 2013:723201–723209

    Article  Google Scholar 

  87. Shinde SS, Bhosale CH, Rajpure KY (2011) Photocatalytic oxidation of salicylic acid and 4-chlorophenol in aqueous solutions mediated by modified AlFe2O3 catalyst under sunlight. J Mol Catal A: Chem 347:65–72

    Article  Google Scholar 

  88. Fateh R, Dillert R, Bahnemann DW (2014) Self-cleaning properties, mechanical stability, and adhesion strength of transparent photocatalytic TiO2-ZnO coatings on polycarbonate. Appl Mater Interfaces 6:2270–2278

    Article  Google Scholar 

  89. Çomakl O, Yetim T, Çelik A (2014) The effect of calcination temperatures on wear properties of TiO2 coated CP-Ti. Surf Coat Technol 246:34–39

    Article  Google Scholar 

  90. Lackner JM, Waldhauser W, Ebner R, Major B, Schoberl T (2004) Pulsed laser deposition of titanium oxide coatings at room temperature-structural, mechanical and tribological properties. Surf Coat Technol 180–181:585–590

    Article  Google Scholar 

  91. Bendavid A, Martin PJ, Takikawa H (2000) Deposition and modification of titanium dioxide thin films by filtered arc deposition. Thin Solid Films 360:241–249

    Article  Google Scholar 

  92. Kern P, Schwaller P, Michler J (2006) Electrolytic deposition of titania films as interference coatings on biomedical implants: microstructure, chemistry and nano-mechanical properties. Thin Solid Films 494:279–286

    Article  Google Scholar 

  93. Sun T (2004) Tribological rutile-TiO2 coating on aluminium alloy. Appl Surf Sci 233:328–335

    Article  Google Scholar 

Download references

Acknowledgements

This research was undertaken under the frame of the Contract Programme between the Center of Water Research and Technologies (CERTE) and the Ministry in charge of the research in Tunisia. It is carried between the Laboratory of Wastewater and Environment of CERTE and the National High School of Engineers of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifa Bousselmi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 231 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbana, N., Ben Youssef, A., Dhiflaoui, H. et al. Preparation and characterization of photocatalytic TiO2 films on functionalized stainless steel. J Mater Sci 53, 3341–3363 (2018). https://doi.org/10.1007/s10853-017-1755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1755-5

Keywords

Navigation