Skip to main content
Log in

Recent trends in graphene materials synthesized by CVD with various carbon precursors

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene is a single layer of carbon atoms arranged in an sp2-hybridized structure with properties far superior compared to other materials. Research and development in graphene synthesis have been rapidly growing the past few years, especially using chemical vapor deposition (CVD) over various types of carbon precursor. The nature and the type of carbon precursor is one important parameter of growth by CVD, especially for graphene production, since they can dramatically impact graphene growth yield and rate. However, effects of the used carbon precursor on graphene growth mechanisms are rarely discussed. In the course of large-scale and low-cost graphene preparation, this review on the recent trends regarding the utilization of diverse carbon precursors used to synthesize graphene via the CVD method is of great interest for development of improved or alternative synthesis methods. The details and the mechanisms involved in graphene synthesis using carbon precursors in the form of gaseous, liquids and solids are compared, analyzed and discussed thoroughly. In this review, we present a thorough overview on the impact and mechanisms of carbon precursors in achieving high-quality graphene with competitive edge in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Reprinted with permission from [106]

Figure 3

Reprinted with permission from [121]

Figure 4

Adapted with permission from [134]

Figure 5

Reprinted with permission from [123]. Stage I: Cu and HCB react and prompt the dechlorination of HCB; Stage II: HCB molecules entirely dechlorinate to form the media product C6 rings and CuCl2; Stage III: The produced media C6 rings assembled together and form graphene on Cu surface

Figure 6

Reprinted with permission from [94]

Figure 7

Reprinted with permission from [49]

Figure 8

Reprinted with permission from [104]

Figure 9
Figure 10

Reprinted with permission from [150]

Figure 11

Adapted from [49, 122]

Similar content being viewed by others

References

  1. Gilje S, Han S, Wang M et al (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Article  Google Scholar 

  2. Ahmad I, Islam M, Abdo HS et al (2015) Toughening mechanisms and mechanical properties of graphene nanosheet-reinforced alumina. Mater Des 88:1234–1243

    Article  Google Scholar 

  3. Wang F, Drzal LT, Qin Y, Huang Z (2014) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50:1082–1093. doi:10.1007/s10853-014-8665-6

    Article  Google Scholar 

  4. Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60

    Article  Google Scholar 

  5. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  Google Scholar 

  6. Wang T, Tsai J (2016) Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites. Comput Mater Sci 122:272–280

    Article  Google Scholar 

  7. Wang X, Li J, Wang Y (2016) Improved high temperature strength of copper–graphene composite material. Mater Lett 181:309–312

    Article  Google Scholar 

  8. Geim AK (2009) Graphene: status and prospects. Science 324:1530

    Article  Google Scholar 

  9. Zhu S, Yuan S, Janssen GCAM (2014) Optical transmittance of multilayer graphene. Lett J Explor Front Phys 108:17007

    Google Scholar 

  10. Weber JW, Bol AA, Van De Sanden MCM (2014) An improved thin film approximation to accurately determine the optical conductivity of graphene from infrared transmittance. Appl Phys Lett 105:13105

    Article  Google Scholar 

  11. Pang J, Bachmatiuk A, Ibrahim I et al (2016) CVD growth of 1D and 2D sp2 carbon nanomaterials. J Mater Sci 51:640–667. doi:10.1007/s10853-015-9440-z

    Article  Google Scholar 

  12. Lee HC, Liu W-W, Chai S-P et al (2017) Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv 7:15644–15693

    Article  Google Scholar 

  13. Casaluci S, Gemmi M, Pellegrini V et al (2016) Graphene-based large area dye-sensitized solar cell modules. Nanoscale 8:5368–5378

    Article  Google Scholar 

  14. Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  Google Scholar 

  15. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459–1476

    Article  Google Scholar 

  16. Kumar R, Singh RK, Singh AK et al (2017) Facile and single step synthesis of three dimensional reduced graphene oxide-NiCoO2 composite using microwave for enhanced electron field emission properties. Appl Surf Sci 416:259–265

    Article  Google Scholar 

  17. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Mater 2:37–54

    Google Scholar 

  18. Kumar R, Joanni E, Singh RK et al (2017) Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes. J Colloid Interface Sci 507:271–278

    Article  Google Scholar 

  19. Kumar R, Singh RK, Vaz AR et al (2017) Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl Mater Interfaces 9:8880–8890

    Article  Google Scholar 

  20. Kucinskis G, Bajars G, Kleperis J (2013) Graphene in lithium ion battery cathode materials: a review. J Power Sources 240:66–79

    Article  Google Scholar 

  21. Zhao L, Li H, Li M et al (2016) Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres. Appl Energy 162:197–206

    Article  Google Scholar 

  22. Kheirabadi N, Shafiekhani A (2012) Graphene/Li-ion battery. J Appl Phys 112:124323

    Article  Google Scholar 

  23. Devrim Y, Albostan A (2016) Graphene-supported platinum catalyst-based membrane electrode assembly for PEM fuel cell. J Electron Mater 45:3900–3907

    Article  Google Scholar 

  24. Najafabadi AT, Leeuwner MJ, Wilkinson DP, Gyenge EL (2016) Electrochemically produced graphene for microporous layers in fuel cells. Chemsuschem 9:1–10

    Article  Google Scholar 

  25. Kuhn L, Gorji NE (2016) Review on the graphene/nanotube application in thin film solar cells. Mater Lett 171:323–326

    Article  Google Scholar 

  26. Putri LK, Ong WJ, Chang WS, Chai SP (2015) Heteroatom doped graphene in photocatalysis: a review. Appl Surf Sci 358:2–14

    Article  Google Scholar 

  27. Park CS, Yoon H, Kwon OS (2016) Graphene-based nanoelectronic biosensors. J Ind Eng Chem 38:13–22

    Article  Google Scholar 

  28. Zhao Y, Li X, Zhou X, Zhang Y (2016) Review on the graphene based optical fiber chemical and biological sensors. Sens Actuators B Chem 231:324–340

    Article  Google Scholar 

  29. Aghigh A, Alizadeh V, Wong HY et al (2015) Recent advances in utilization of graphene for filtration and desalination of water: a review. Desalination 365:389–397

    Article  Google Scholar 

  30. Jin Z, Owour P, Lei S, Ge L (2015) Graphene, graphene quantum dots and their applications in optoelectronics. Curr Opin Colloid Interface Sci 20:439–453

    Article  Google Scholar 

  31. Polat EO, Uzlu HB, Balci O et al (2016) Graphene-enabled optoelectronics on paper. ACS Photonics 3:964–971

    Article  Google Scholar 

  32. Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Article  Google Scholar 

  33. Levchenko I, Ostrikov K, Zheng J et al (2016) Scalable graphene production: perspectives and challenges of plasma applications. Nanoscale 8:10511–10527

    Article  Google Scholar 

  34. Seah C-M, Chai S-P, Mohamed AR (2014) Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70:1–21

    Article  Google Scholar 

  35. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  36. Botas C, Alvarez P, Blanco P et al (2013) Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65:156–164

    Article  Google Scholar 

  37. Muhammad S, Ritikos R, James T et al (2014) A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens Actuators B Chem 193:692–700

    Article  Google Scholar 

  38. Li X, Zhang G, Bai X et al (2008) Highly conducting graphene sheets and Langmuir–Blodgett films. Nat Nanotechnol 3:538–542

    Article  Google Scholar 

  39. Robinson J, Weng X, Trumbull K et al (2010) Nucleation of epitaxial graphene on SiC(0001). ACS Nano 4:153–158

    Article  Google Scholar 

  40. Sun J, Chen Y, Priydarshi MK et al (2015) Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett 15:5846–5854

    Article  Google Scholar 

  41. Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4:30–33

    Article  Google Scholar 

  42. Wang G, Zhang M, Zhu Y et al (2013) Direct growth of graphene film on germanium substrate. Sci Rep 3:1–6

    Google Scholar 

  43. Weatherup RS, Shahani AJ, Wang ZJ et al (2016) In situ graphene growth dynamics on polycrystalline catalyst foils. Nano Lett 16:6196–6206

    Article  Google Scholar 

  44. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  45. Batzill M (2012) The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf Sci Rep 67:83–115

    Article  Google Scholar 

  46. Sun H, Xu J, Wang C et al (2016) Synthesis of large-area monolayer and bilayer graphene using solid coronene by chemical vapor deposition. Carbon 108:356–362

    Article  Google Scholar 

  47. Braeuninger-Weimer P, Brennan B, Pollard AJ, Hofmann S (2016) Understanding and controlling Cu-catalyzed graphene nucleation: the role of impurities, roughness, and oxygen scavenging. Chem Mater 28:8905–8915

    Article  Google Scholar 

  48. Seah CM, Vigolo B, Chai SP et al (2016) Sequential synthesis of free-standing high quality bilayer graphene from recycled nickel foil. Carbon 96:268–275

    Article  Google Scholar 

  49. Jang J, Son M, Chung S et al (2015) Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Sci Rep 5:17955

    Article  Google Scholar 

  50. Lee K, Ye J (2016) Significantly improved thickness uniformity of graphene monolayers grown by chemical vapor deposition by texture and morphology control of the copper foil substrate. Carbon 100:441–449

    Article  Google Scholar 

  51. Kato R, Minami S, Koga Y, Hasegawa M (2016) High growth rate chemical vapor deposition of graphene under low pressure by RF plasma assistance. Carbon 96:1008–1013

    Article  Google Scholar 

  52. Fang L, Yuan W, Wang B, Xiong Y (2016) Growth of graphene on Cu foils by microwave plasma chemical vapor deposition: the effect of in situ hydrogen plasma post-treatment. Appl Surf Sci 383:28–32

    Article  Google Scholar 

  53. Li X, Cai W, An J et al (2009) Large area synthesis of high quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  Google Scholar 

  54. Suk JW, Kitt A, Magnuson CW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5:6916–6924

    Article  Google Scholar 

  55. Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272

    Article  Google Scholar 

  56. Li Z, Wu P, Wang C et al (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5:3385–3390

    Article  Google Scholar 

  57. Suriani AB, Dalila AR, Mohamed A et al (2015) Synthesis of carbon nanofibres from waste chicken fat for field electron emission applications. Mater Res Bull 70:524–529

    Article  Google Scholar 

  58. Ouyang B, Jacob MV, Rawat RS (2015) Free standing 3D graphene nano-mesh synthesis by RF plasma CVD using non-synthetic precursor. Mater Res Bull 71:61–66

    Article  Google Scholar 

  59. Rosmi MS, Shinde SM, Rahman NDA et al (2016) Synthesis of uniform monolayer graphene on re-solidified copper from waste chicken fat by low pressure chemical vapor deposition. Mater Res Bull 83:573–580

    Article  Google Scholar 

  60. Liu H, Kishi N, Soga T (2015) Synthesis of thiolated few-layered graphene by thermal chemical vapor deposition using solid precursor. Mater Lett 159:114–117

    Article  Google Scholar 

  61. Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430:56–59

    Article  Google Scholar 

  62. Au C-T, Ng C-F, Liao M-S (1999) Methane dissociation and syngas formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: a theoretical study. J Catal 185:12–22

    Article  Google Scholar 

  63. An W, Zeng XC, Turner CH (2009) First-principles study of methane dehydrogenation on a bimetallic Cu/Ni(111) surface. J Chem Phys 131:174702

    Article  Google Scholar 

  64. Kordatos A, Kelaidis N, Giamini SA et al (2016) AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(111) and electronic structure characterization. Appl Surf Sci 369:251–256

    Article  Google Scholar 

  65. Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  Google Scholar 

  66. Guo W, Xu C, Xu K et al (2015) Rapid chemical vapor deposition of graphene on liquid copper. Synth Met 216:93–97

    Article  Google Scholar 

  67. Pollard AJ (2015) Metrology for graphene and 2-D materials. In: 17 th international congress of metrology, vol 1, pp 1–7

  68. Yang M, Sasaki S, Suzuki K, Miura H (2016) Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene. Appl Surf Sci 366:219–226

    Article  Google Scholar 

  69. Gottardi S, Müller K, Bignardi L et al (2015) Comparing graphene growth on Cu(111) versus oxidized Cu(111). Nano Lett 15:917–922

    Article  Google Scholar 

  70. Reckinger N, Van Hooijdonk E, Joucken F et al (2014) Anomalous moiré pattern of graphene investigated by scanning tunneling microscopy: evidence of graphene growth on oxidized Cu (111). Nano Res 7:154–162

    Article  Google Scholar 

  71. Chen CS, Hsieh CK (2015) Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition. Thin Solid Films 584:265–269

    Article  Google Scholar 

  72. Mueller NS, Morfa AJ, Abou-Ras D et al (2014) Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition. Carbon 78:347–355

    Article  Google Scholar 

  73. Qi M, Ren Z, Jiao Y et al (2013) Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene. J Phys Chem C 117:14348–14353

    Article  Google Scholar 

  74. Trinsoutrot P, Vergnes H, Caussat B (2014) Three dimensional graphene synthesis on nickel foam by chemical vapor deposition from ethylene. Mater Sci Eng B Solid State Mater Adv Technol 179:12–16

    Article  Google Scholar 

  75. Celebi K, Cole MT, Teo KBK, Park HG (2011) Observations of early stage graphene growth on copper. Electrochem Solid State Lett 15:K1–K4

    Article  Google Scholar 

  76. Addou R, Dahal A, Sutter P, Batzill M (2012) Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition. Appl Phys Lett 100:10–13

    Article  Google Scholar 

  77. Sagar RR, Zhang X, Xiong C (2014) Growth of graphene on copper and nickel foils via chemical vapour deposition using ethylene. Mater Res Innovations 18:S4706–S4710

    Article  Google Scholar 

  78. Gotterbarm K, Zhao W, Höfert O et al (2013) Growth and oxidation of graphene on Rh(111). Phys Chem Chem Phys 15:19625

    Article  Google Scholar 

  79. Liu W-W, Chai S-P, Mohamed AR, Hashim U (2014) Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J Ind Eng Chem 20:1171–1185

    Article  Google Scholar 

  80. Strudwick AJ, Weber NE, Schwab MG et al (2015) Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. ACS Nano 9:31–42

    Article  Google Scholar 

  81. Yagi K, Yamada A, Hayashi K et al (2013) Dependence of field-effect mobility of graphene grown by thermal chemical vapor deposition on its grain size. Jpn J Appl Phys 52:110106

    Article  Google Scholar 

  82. Guermoune A, Chari T, Popescu F et al (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49:4204–4210

    Article  Google Scholar 

  83. Srivastava A, Galande C, Ci L et al (2010) Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem Mater 22:3457–3461

    Article  Google Scholar 

  84. Miyata Y, Kamon K, Ohashi K (2010) A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Appl Phys Lett 96:263105

    Article  Google Scholar 

  85. Kishi N, Fukaya A, Sugita R et al (2012) Synthesis of graphenes on Ni foils by chemical vapor deposition of alcohol with IR-lamp heating. Mater Lett 79:21–24

    Article  Google Scholar 

  86. Pollard AJ, Brennan B, Stec H et al (2014) Quantitative characterization of defect size in graphene using Raman spectroscopy. Appl Phys Lett 105:253107

    Article  Google Scholar 

  87. Dong X, Wang P, Fang W et al (2011) Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 49:3672–3678

    Article  Google Scholar 

  88. John R, Ashokreddy A, Vijayan C, Pradeep T (2011) Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition. Nanotechnology 22:165701

    Article  Google Scholar 

  89. Choi J-H, Li Z, Cui P et al (2013) Drastic reduction in the growth temperature of graphene on copper via enhanced London dispersion force. Sci Rep 3:1925

    Article  Google Scholar 

  90. Seo DH, Pineda S, Fang J et al (2017) Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nat Commun 8:14217

    Article  Google Scholar 

  91. Salifairus MJ, Abd Hamid SB, Soga T et al (2016) Structural and optical properties of graphene from green carbon source via thermal chemical vapor deposition. J Mater Res 31:1–10

    Article  Google Scholar 

  92. Jalani D, Rahman SFA, Hashim AM (2016) Defect-free mixed mono- and bi-layer graphene synthesized from refined palm oil by thermal chemical vapor deposition. Mater Lett 182:168–172

    Article  Google Scholar 

  93. Han Q, Shan H, Deng J et al (2014) Construction of carbon-based two-dimensional crystalline nanostructure by chemical vapor deposition of benzene on Cu(111). Nanoscale 6:7934–7939

    Article  Google Scholar 

  94. Xue Y, Wu B, Jiang L et al (2012) Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J Am Chem Soc 134:11060–11063

    Article  Google Scholar 

  95. Zhang C, Fu L, Liu N et al (2011) Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater 23:1020–1024

    Article  Google Scholar 

  96. Johns IB, McElhill EA, Smith JO (1962) Thermal stability of some organic compounds. J Chem Eng Data 7:277–281

    Article  Google Scholar 

  97. Gan W, Han N, Yang C et al (2017) A ternary alloy substrate to synthesize monolayer graphene with liquid carbon precursor. ACS Nano 11:1371–1379

    Article  Google Scholar 

  98. Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601–7607

    Article  Google Scholar 

  99. Ray AK, Sahu RK, Rajinikanth V et al (2012) Preparation and characterization of graphene and Ni-decorated graphene using flower petals as the precursor material. Carbon 50:4123–4129

    Article  Google Scholar 

  100. Lopez GA, Mittemeiker EJ (2004) The solubility of C in solid Cu. Scripta Mater 51:1–5

    Article  Google Scholar 

  101. Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46:2329–2339

    Article  Google Scholar 

  102. Sun ZZ, Yan Z, Yao J et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552

    Article  Google Scholar 

  103. Cheng IF, Xie Y, Allen Gonzales R et al (2011) Synthesis of graphene paper from pyrolyzed asphalt. Carbon 49:2852–2861

    Article  Google Scholar 

  104. Liu Z, Tu Z, Li Y et al (2014) Synthesis of three-dimensional graphene from petroleum asphalt by chemical vapor deposition. Mater Lett 122:285–288

    Article  Google Scholar 

  105. Sharma S, Kalita G, Hirano R et al (2014) Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon 72:66–73

    Article  Google Scholar 

  106. Peng Z, Yan Z, Sun Z, Tour JM (2011) Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel. ACS Nano 5:8241–8247

    Article  Google Scholar 

  107. Losurdo M, Giangregorio MM, Capezzuto P, Bruno G (2011) Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys 13:20836–20843

    Article  Google Scholar 

  108. Kumar M, Ando Y (2007) Carbon nanotubes from camphor: an environment-friendly nanotechnology. J Phys: Conf Ser 61:643–646

    Google Scholar 

  109. Kumar M, Ando Y (2003) A simple method of producing aligned carbon nanotubes from an unconventional precursor—Camphor. Chem Phys Lett 374:521–526

    Article  Google Scholar 

  110. Kumar M, Ando Y (2003) Camphor-a botanical precursor producing garden of carbon nanotubes. Diam Relat Mater 12:998–1002

    Article  Google Scholar 

  111. Kumar M, Ando Y (2003) Single-wall and multi-wall carbon nanotubes from camphor—a botanical hydrocarbon. Diam Relat Mater 12:1845–1850

    Article  Google Scholar 

  112. Ahmed M, Kishi N, Sugita R et al (2013) Graphene synthesis by thermal chemical vapor deposition using solid precursor. J Mater Sci: Mater Electron 24:2151–2155

    Google Scholar 

  113. Kalita G, Wakita K, Umeno M (2011) Monolayer graphene from a green solid precursor. Physica E 43:1490–1493

    Article  Google Scholar 

  114. Debgupta J, Mandal S, Kalita H et al (2014) Photophysical and photoconductivity properties of thiol-functionalized graphene–CdSe QD composites. RSC Adv 4:13788–13795

    Article  Google Scholar 

  115. Marquardt D, Beckert F, Pennetreau F et al (2014) Hybrid materials of platinum nanoparticles and thiol-functionalized graphene derivatives. Carbon 66:285–294

    Article  Google Scholar 

  116. Debgupta J, Pillai VK (2013) Thiolated graphene—a new platform for anchoring CdSe quantum dots for hybrid heterostructures. Nanoscale 5:3615–3619

    Article  Google Scholar 

  117. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  118. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  119. Seo JH, Lee HW, Kim J-K et al (2012) Few layer graphene synthesized by filtered vacuum arc system using solid carbon source. Curr Appl Phys 12:S131–S133

    Article  Google Scholar 

  120. Ji H, Hao Y, Ren Y et al (2011) Graphene growth using a solid carbon feedstock and hydrogen. ACS Nano 5:7656–7661

    Article  Google Scholar 

  121. Seo JH, Kang JW, Kim DH et al (2013) Simple wafer-scale growth and transfer of graphene film converted from spin-coated fullerene derivative. ECS Solid State Lett 2:M13–M16

    Article  Google Scholar 

  122. Yan Z, Peng Z, Casillas G et al (2014) Rebar graphene. ACS Nano 8:5061–5068

    Article  Google Scholar 

  123. Gan X, Zhou H, Zhu B et al (2012) A simple method to synthesize graphene at 633 K by dechlorination of hexachlorobenzene on Cu foils. Carbon 50:306–310

    Article  Google Scholar 

  124. Gao X, Wang W, Liu X (2008) Low-temperature dechlorination of hexachlorobenzene on solid supports and the pathway hypothesis. Chemosphere 71:1093–1099

    Article  Google Scholar 

  125. Barber JL, Sweetman AJ, Van Wijk D, Jones KC (2005) Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. Sci Total Environ 349:1–44

    Article  Google Scholar 

  126. Wong WWH, Subbiah J, Puniredd SR et al (2012) Liquid crystalline hexa-peri-hexabenzocoronene-diketopyrrolopyrrole organic dyes for photovoltaic applications. J Mater Chem 22:21131

    Article  Google Scholar 

  127. Qin L, Zhang Y, Wu X et al (2015) In situ electrochemical synthesis and deposition of discotic hexa-peri-hexabenzocoronene molecules on electrodes: self-assembled structure, redox properties, and application for supercapacitor. Small 11:3028–3034

    Article  Google Scholar 

  128. Eom D, Prezzi D, Rim KT et al (2009) Structure and electronic properties of graphene nanoislands on Co(0001). Nano Lett 9:2844–2848

    Article  Google Scholar 

  129. Mullen K, Rabe JP (2008) Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them. Acc Chem Res 41:511–520

    Article  Google Scholar 

  130. Cui Y, Fu Q, Zhang H, Bao X (2011) Formation of identical-size graphene nanoclusters on Ru(0001). Chem Commun 47:1470–1472

    Article  Google Scholar 

  131. Xu M, Fujita D, Sagisaka K et al (2011) Production of extended single-layer. ACS Nano 5:1522–1528

    Article  Google Scholar 

  132. Luo Z, Lu Y, Singer DW et al (2011) Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater 23:1441–1447

    Article  Google Scholar 

  133. Liao Meng-Sheng, Chak-Tong Au, Ng Ching-Fai (1997) Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces—a theoretical comparative study. Chem Phys Lett 272:445–452

    Article  Google Scholar 

  134. Gajewski G, Pao C-W (2011) Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface. J Chem Phys 135:64707

    Article  Google Scholar 

  135. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Taylor & Francis Group, Boca Baton, FL

  136. Zhang W, Wu P, Li Z, Yang J (2011) First-principles thermodynamics of graphene growth on Cu surfaces. J Phys Chem C 115:17782–17787

    Article  Google Scholar 

  137. Xiao B, Yu XF, Ding YH (2014) Theoretical investigation on the healing mechanism of divacancy defect in CNT growth by C2H2 and C2H4. J Mol Model 20:640–645

    Article  Google Scholar 

  138. Park JS, Reina A, Saito R et al (2009) G′ band Raman spectra of single, double and triple layer graphene. Carbon 47:1303–1310

    Article  Google Scholar 

  139. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:1–4

    Google Scholar 

  140. Jin Z, Yao J, Kittrell C, Tour JM (2011) Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5:4112–4117

    Article  Google Scholar 

  141. Rowlinson JS (1979) The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat Phys 20:197–200

    Article  Google Scholar 

  142. Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10:4128–4133

    Article  Google Scholar 

  143. Son IH, Song HJ, Kwon S et al (2014) CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8:9224–9232

    Article  Google Scholar 

  144. Oberlin A (1984) Carbonization and graphitization. Carbon 22:521–541

    Article  Google Scholar 

  145. Xu S, Fu H, Li Y et al (2016) Novel scroll peapod produced by spontaneous scrolling of graphene onto fullerene string. Phys Chem Chem Phys 18:10138–10143

    Article  Google Scholar 

  146. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  147. Artyukhov VI, Liu Y, Yakobson BI (2012) Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc Natl Acad Sci 109:15136–15140

    Article  Google Scholar 

  148. Sha J, Salvatierra RV, Dong P et al (2017) Three-dimensional rebar graphene. ACS Appl Mater Interfaces 9:7376–7384

    Article  Google Scholar 

  149. Li Y, Peng Z, Larios E et al (2015) Rebar graphene from functionalized boron nitride nanotubes. ACS Nano 9:532–538

    Article  Google Scholar 

  150. Kumar R, Singh RK, Singh DP (2016) Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: graphene and CNTs. Renew Sustain Energy Rev 58:976–1006

    Article  Google Scholar 

  151. Kumar R, Singh RK, Singh DP et al (2017) Laser-assisted synthesis, reduction and micro-patterning of graphene: recent progress and applications. Coord Chem Rev 342:34–79

    Article  Google Scholar 

  152. Sharief SA, Susantyoko RA, Alhashem M, Almheiri S (2017) Synthesis of few-layer graphene-like sheets from carbon-based powders via electrochemical exfoliation, using carbon black as an example. J Mater Sci 52:11004–11013. doi:10.1007/s10853-017-1275-3

    Article  Google Scholar 

  153. Dai W, Chung CY, Alam FE et al (2017) Superior field emission performance of graphene/carbon nanofilament hybrids synthesized by electrochemical self-exfoliation. Mater Lett 205:223–225

    Article  Google Scholar 

  154. Rao KS, Senthilnathan J, Liu Y-F, Yoshimura M (2015) Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Sci Rep 4:4237

    Article  Google Scholar 

  155. Wu W, Zhang C, Hou S (2017) Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets. J Mater Sci 52:10649–10660. doi:10.1007/s10853-017-1289-x

    Article  Google Scholar 

  156. Kumar R, Singh RK, Dubey PK et al (2013) Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability. J Nanopart Res 15:1847

    Article  Google Scholar 

  157. Polsen ES, McNerny DQ, Viswanath B et al (2015) High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci Rep 5:10257

    Article  Google Scholar 

  158. Mao H, Wang R, Zhong J et al (2014) Mildly O2 plasma treated CVD graphene as a promising platform for molecular sensing. Carbon 76:212–219

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Government of Malaysia (MyBrain), USM-NanoMITE (203/PJKIMIA/6720009) and Fundamental Research Grant Scheme (203/PJKIMIA/6071335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Vigolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kairi, M.I., Khavarian, M., Bakar, S.A. et al. Recent trends in graphene materials synthesized by CVD with various carbon precursors. J Mater Sci 53, 851–879 (2018). https://doi.org/10.1007/s10853-017-1694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1694-1

Keywords

Navigation