Skip to main content
Log in

Theoretical investigation on the healing mechanism of divacancy defect in CNT growth by C2H2 and C2H4

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Experimental studies have shown that chemical vapor decomposition method by using C2H2/C2H4 as carbon source could dramatically decrease the defects in prepared CNT. However, the inherent mechanism with regards to reduction of defects is quite unclear. In the present paper, density functional theory is used to study the healing process of CNT with divacancy defect by C2H2/C2H4 molecule. The healing processes undergo three evolution steps: (i) the chemisorption of the first C2H2/C2H4 molecule on defective CNT; (ii) the insertion of C atoms from C2H2/C2H4 molecule into defective CNT; (iii) the removal of the H atoms on CNT, forming perfect CNT. The estimated adsorption energy barrier of C2H2/C2H4 molecules on defective CNT is within the range from 1.10 to 1.63 eV, and the eventual formation of CNT is strongly exothermic (4.40/4.54 eV in (8, 0) CNT). In light of the unique conditions of CNT synthesis, i.e., high temperature in a closed container, such healing processes could most likely take place. Therefore, we propose that during CNT synthesis procedures, both C2H2 and C2H4 could act as a carbon source and the defect healer.

The healing mechanism of divacancy defect in CNT growth by C2H2 and C2H4

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Rao CNR, Govindaraj A (2002) Acc Chem Res 35:998–1007

    Article  CAS  Google Scholar 

  3. Andrews R, Jacques D, Qian D, Rantell T (2002) Acc Chem Res 35:1008–1017

    Article  CAS  Google Scholar 

  4. Ouyang M, Huang JL, Lieber CM (2002) Acc Chem Res 35:1018–1025

    Article  CAS  Google Scholar 

  5. Avouris P (2002) Acc Chem Res 35:1026–1034

    Article  CAS  Google Scholar 

  6. Yakobson BI, Brabec CJ, Bernholc J (1996) Phys Rev Lett 76:2511–2514

    Article  CAS  Google Scholar 

  7. Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971–1975

    Article  CAS  Google Scholar 

  8. Hamada N, Sawada SI, Oshiyama A (1992) Phys Rev Lett 68:1579–1581

    Article  CAS  Google Scholar 

  9. Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Nature 391:59–62

    Article  CAS  Google Scholar 

  10. Li XH, Niu JL, Zhang J, Li HL, Liu ZF (2003) J Phys Chem B 107:2453–2458

    Article  CAS  Google Scholar 

  11. Ishigami M, Choi HJ, Aloni S, Louie SG, Cohen ML, Zettl A (2004) Phys Rev Lett 93:196803–196806

    Article  CAS  Google Scholar 

  12. Charlier JC (2002) Acc Chem Res 35:1063–1069

    Article  CAS  Google Scholar 

  13. Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K, Kashi K (2004) Phys Rev B 70:245416–245423

    Article  CAS  Google Scholar 

  14. Belytschko T, Xiao SP, Schatz GC, Ruoff R (2002) Phys Rev B 65:235430–235437

    Article  CAS  Google Scholar 

  15. Tian WQ, Liu LV, Wang YA, Rieth M, Schommers W (2006) Handbook of theoretical and computational nanotechnology. 9:499–524

  16. Liu LV, Tian WQ, Wang YA (2006) J Phys Chem B 110:1999–2005

    Article  CAS  Google Scholar 

  17. Fagan SB, Silva LB, Mota R (2003) Nano Lett 3:289–291

    Article  CAS  Google Scholar 

  18. Gomez-Navarro C, De Pablo PJ, Gomez-Herrero J, Biel B, Garcia-Vidal FJ, Rubio A, Flores F (2005) Nat Mater 4:534–539

    Article  CAS  Google Scholar 

  19. Kotakoski J, Krasheninnikov AV, Nordlund K (2006) Phys Rev B 74:245420–245424

    Article  CAS  Google Scholar 

  20. Jin CH, Suenaga K, Iijima S (2008) Nano Lett 8:1127–1132

    Article  CAS  Google Scholar 

  21. Krasheninnikov AV, Lehtinen PO, Foster AS, Nieminen RM (2006) Chem Phys Lett 418:132–136

    Article  CAS  Google Scholar 

  22. Journet C, Maser WK, Bernier P, Loiseau A, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Nature 388:756–758

    Article  CAS  Google Scholar 

  23. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Hee LY, Kim GS, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Science 273:483–487

    Article  CAS  Google Scholar 

  24. Hernadi K, Fonseca A, Nagy JB, Siska A, Kiricsi I (2000) Appl Catal A 199:245–255

    Article  CAS  Google Scholar 

  25. Colomer JF, Stephan S, Lefrant S, Van Tendeloo G, Willems I, Konya Z, Fonseca A, Laurent C, Nagy JB (2000) Chem Phys Lett 317:83–89

    Article  CAS  Google Scholar 

  26. Bacsa RR, Laurent C, Peigney A, Bacsa WS, Vaugien T, Rousset A (2000) Chem Phys Lett 323:566–571

    Article  CAS  Google Scholar 

  27. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996) Science 274:1701–1703

    Article  CAS  Google Scholar 

  28. Xiao B, Zhao JX, Ding YH, Sun CC (2010) ChemPhysChem 11:3505–3510

    Article  CAS  Google Scholar 

  29. Wang C, Xiao B, Ding YH (2012) ChemPhysChem 13:774–779

    Article  CAS  Google Scholar 

  30. Wang C, Xiao B, Ding YH (2013) New J Chem 37:640–645

    Article  CAS  Google Scholar 

  31. Wang C, Ding YH (2013) J Mater Chem A 1:1885–1891

    Article  CAS  Google Scholar 

  32. Francisco-Marquez M, Galano A, Martinez A (2010) J Phys Chem C114:6363–6370

    Google Scholar 

  33. Francisco-Marquez M, Galano A, Martinez A (2010) J Phys Chem C 114:8302–8308

    Article  CAS  Google Scholar 

  34. Lu X, Chen ZF, Schleyer P VR (2005) J Am Chem Soc 127:20–21

    Article  CAS  Google Scholar 

  35. Chelmecka E, Pasterny K, Kupka T, Stobinski L (2012) J Mol Model 18:1463–1472

    Article  CAS  Google Scholar 

  36. Mylvaganam K, Zhang LC (2004) J Phys Chem B 108:15009–15012

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Ragha-vachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN 03, revision D.02. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  38. Jia GX, Li XG, Song XW, Li JQ, Chen Y (2013) Surf Sci 608:122–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Basic Research Program of China (973 Program) (2012CB932800), National Key Basic Research and Development Program of China under Grant No. 2010CB327701, and the National Natural Science Foundation of China (No. 21273093, 20773054, 21073074), Doctor Foundation by the Ministry of Education (20070183028), Excellent Young Teacher Foundation of Ministry of Education of China, Excellent Young People Foundation of Jilin Province (20050103), and Program for New Century Excellent Talents in University (NCET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-hong Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, B., Yu, Xf. & Ding, Yh. Theoretical investigation on the healing mechanism of divacancy defect in CNT growth by C2H2 and C2H4 . J Mol Model 20, 2125 (2014). https://doi.org/10.1007/s00894-014-2125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2125-8

Keywords

Navigation