Skip to main content

Advertisement

Log in

Influence of oxygen-containing groups of activated carbon aerogels on copper/activated carbon aerogels catalyst and synthesis of dimethyl carbonate

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Active catalysts that were prepared by dispersing copper (Cu) nanoparticles on potassium hydroxide (KOH)-activated carbon aerogels (ACAs) were investigated in the synthesis of dimethyl carbonate (DMC) by vapor-phase oxidative carbonylation of methanol. The effect of mesopores and surface oxygen-containing groups (OCGs) including C = O, COOH and OH of the ACAs on the dispersion of active species and catalytic properties was determined. An increase in molar ratio of resorcinol to anhydrous sodium carbonate (R/C) lead to the creation of mesopores within the original carbon aerogels (CAs), which benefits to molecules mass transport. The amount of surface OCGs increased positively with KOH/CAs mass ratio, which affected the valence distribution of Cu species, improved the Cu dispersion and enhanced the catalytic activity. For an optimum R/C of 500 and a KOH/CAs mass ratio of 4, the Cu/ACAs catalyst maintains a prominent DMC space time yield of 338.7 mg/(g h) and a methanol conversion of 2.5%. Density functional theory calculations indicate that of the different surface OCGs of the carbon support, enrichment in C = O group enhances the interaction between the metal and the ACAs support significantly and contributes to the formation of the smallest Cu nanoparticles and the highest catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Huang H, Yan F, Kek Y, Chew C, Xu G, Ji W, Oh P, Tang S (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175

    Article  Google Scholar 

  2. Dhas N, Raj C, Gedanken A (1998) Preparation of luminescent silicon nanoparticles: a novel sonochemical approach. Chem Mater 10:3278

    Article  Google Scholar 

  3. Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S, Martra G (2002) Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem Mater 14:1183–1186

    Article  Google Scholar 

  4. Liu Z, Bando Y (2003) A novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305

    Article  Google Scholar 

  5. Gawande M, Goswami A, Fo-X Felpin, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma R (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  Google Scholar 

  6. Widayatno W, Guan G, Rizkiana J, Yang J, Hao X, Tsutsumi A, Abudula A (2016) Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability. Appl Catal B Environ 186:166–172

    Article  Google Scholar 

  7. Serp P, Machado B (2015) Nanostructured carbon materials for catalysis. RSC, London

    Google Scholar 

  8. Zhao H, Chen Y, Peng Q, Wang Q, Zhao G (2017) Catalytic activity of MOF (2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo–electro–Fenton process. Appl Catal B Environ 203:127–137

    Article  Google Scholar 

  9. Pekala R (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227. doi:10.1007/BF01139044

    Article  Google Scholar 

  10. Robertson C, Mokaya R (2013) Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage. Microporous Mesoporous Mater 179:151–156

    Article  Google Scholar 

  11. Liu L, Meng Q (2005) Electrochemical properties of mesoporous carbon aerogel electrodes for electric double layer capacitors. J Mater Sci 40:4105–4107. doi:10.1007/s10853-005-0644-5

    Article  Google Scholar 

  12. Shen W, Li Z, Liu Y (2008) Surface chemical functional groups modification of porous carbon. Recent Pat Chem Eng 1:27–40

    Article  Google Scholar 

  13. Pereira M, Orfao J, Figueiredo J (1999) Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups. Appl Catal A Gen 184:153–160

    Article  Google Scholar 

  14. Hsu H, Shown I, Wei H, Chang Y, Du H, Lin Y, Tseng C, Wang C, Chen L, Lin Y (2013) Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 5:262–268

    Article  Google Scholar 

  15. Choi S, Seo M, Kim H, Kim W (2011) Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon 49:904–909

    Article  Google Scholar 

  16. Rao R, Ling Q, Dong H, Dong X, Li N, Zhang A (2016) Effect of surface modification on multi-walled carbon nanotubes for catalytic oxidative dehydrogenation using CO2 as oxidant. Chem Eng J 301:115–122

    Article  Google Scholar 

  17. Saada R, Kellici S, Heil T, Morgan D, Saha B (2015) Greener synthesis of dimethyl carbonate using a novel ceria–zirconia oxide/graphene nanocomposite catalyst. Appl Catal B Environ 168:353–362

    Article  Google Scholar 

  18. Ono Y (1997) Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl Catal A Gen 155:133–166

    Article  Google Scholar 

  19. Jessop P, Ikariya T, Noyori R (1999) Homogeneous catalysis in supercritical fluids. Chem Rev 99:475–494

    Article  Google Scholar 

  20. Wang X, Fu T, Zheng H, Zhang G, Li Z (2016) The influence of the pore structure in ordered mesoporous carbon over the formation of Cu species and their catalytic activity towards the methanol oxidative carbonylation. J Mater Sci 51:5514–5528. doi:10.1007/s10853-016-9857-z

    Article  Google Scholar 

  21. Yang P, Cao Y, Dai W, Deng J, Fan K (2003) Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts. Appl Catal A-Gen 243:323–331

    Article  Google Scholar 

  22. Bian J, Xiao M, Wang S, Lu Y, Meng Y (2009) Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Surf Sci 255:7188–7196

    Article  Google Scholar 

  23. Zhang G, Li Z, Zheng H, Fu T, Ju Y, Wang Y (2015) Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol. Appl Catal B Environ 179:95–105

    Article  Google Scholar 

  24. Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI, Wong C, Liu H, Yang B (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15:9–23

    Article  Google Scholar 

  25. Ren M, Ren J, Hao P, Yang J, Wang D, Pei Y, Lin J, Li Z (2016) Influence of microwave irradiation on the structural properties of carbon—supported hollow copper nanoparticles and their effect on the synthesis of dimethyl carbonate. ChemCatChem 8:861–871

    Article  Google Scholar 

  26. Li J, Wang X, Huang Q, Gamboa S, Sebastian P (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sour 158:784–788

    Article  Google Scholar 

  27. Ren J, Wang W, Wang D, Zuo Z, Lin J, Li Z (2014) A theoretical investigation on the mechanism of dimethyl carbonate formation on Cu/AC catalyst. Appl Catal A Gen 472:47–52

    Article  Google Scholar 

  28. Delley B (1990) An all—electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  Google Scholar 

  29. Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Chem Phys 100:6107–6110

    Article  Google Scholar 

  30. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  Google Scholar 

  31. Hohenberg P, Kohn W (1965) Inhomogeneous electron gas. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  32. Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy—adjusted abinitio pseudopotentials for the first row transition elements. J Chem Phys 86:866–872

    Article  Google Scholar 

  33. Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441

    Article  Google Scholar 

  34. Brunauer S, Deming L, Deming W, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Article  Google Scholar 

  35. Khalili N, Campbell M, Sandi G, Golaś J (2000) Production of micro-and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation. Carbon 38:1905–1915

    Article  Google Scholar 

  36. Xia J, Fu Y, He G, Sun X, Wang X (2017) Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Appl Catal B Environ 200:39–46

    Article  Google Scholar 

  37. Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D (2012) A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem 22:93–99

    Article  Google Scholar 

  38. Lozano-Castello D, Calo J, Cazorla-Amoros D, Linares-Solano A (2007) Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45:2529–2536

    Article  Google Scholar 

  39. Raymundo-Pinero E, Azais P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795

    Article  Google Scholar 

  40. Zhao F, Huang Y (2011) Grafting of polyhedral oligomeric silsesquioxanes on a carbon fiber surface: novel coupling agents for fiber/polymer matrix composites. J Mater Chem 21:3695–3703

    Article  Google Scholar 

  41. Biniak S, Pakula M, Szymanski G, Swiatkowski A (1999) Effect of activated carbon surface oxygen-and/or nitrogen-containing groups on adsorption of copper (II) ions from aqueous solution. Langmuir 15:6117–6122

    Article  Google Scholar 

  42. Li W, Lu A, Guo S (2001) Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde. Carbon 39:1989–1994

    Article  Google Scholar 

  43. Park S, Jung W (2002) Effect of KOH activation on the formation of oxygen structure in activated carbons synthesized from polymeric precursor. Colloid Interf Sci 250:93–98

    Article  Google Scholar 

  44. Boehm H (2008) Surface chemical characterization of carbons from adsorption studies. Adsorpt Carbons 301–327

  45. Lin B, Wei K, Ni J, Lin J (2013) KOH activation of thermally modified carbon as a support of Ru catalysts for ammonia synthesis. ChemCatChem 5:1941–1947

    Article  Google Scholar 

  46. Lopez-Ramon M, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37:1215–1221

    Article  Google Scholar 

  47. Varga M, Izak T, Vretenar V, Kozak H, Holovsky J, Artemenko A, Hulman M, Skakalova V, Lee DS, Kromka A (2017) Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon 111:54–61

    Article  Google Scholar 

  48. Okpalugo T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161

    Article  Google Scholar 

  49. Sheng Z, Shao L, Chen J, Bao W, Wang F, Xia X (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358

    Article  Google Scholar 

  50. Xiong B, Zhou Y, Zhao Y, Wang J, Chen X, O’Hayre R, Shao Z (2013) The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon 52:181–192

    Article  Google Scholar 

  51. Song W, Li Y, Guo X, Li J, Huang X, Shen W (2010) Selective surface modification of activated carbon for enhancing the catalytic performance in hydrogen peroxide production by hydroxylamine oxidation. J Mol Catal A: Chem 328:53–59

    Article  Google Scholar 

  52. Horikawa T, Sakao N, Sekida T, Hayashi J, Do D, Katoh M (2012) Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption. Carbon 50:1833–1842

    Article  Google Scholar 

  53. Li J, Ma L, Li X, Lu C, Liu H (2005) Effect of nitric acid pretreatment on the properties of activated carbon and supported palladium catalysts. Ind Eng Chem Res 44:5478–5482

    Article  Google Scholar 

  54. Rodrigues E, Pereira M, Chen X, Delgado J, Órfão J (2011) Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation. J Catal 281:119–127

    Article  Google Scholar 

  55. Dandekar A, Baker R, Vannice M (1999) Carbon-supported copper catalysts: I.Characterization. J Catal 183:131–154

    Article  Google Scholar 

  56. Ren J, Ren M, Wang D, Lin J, Li Z (2015) Mechanism of microwave-induced carbothermic reduction and catalytic performance of Cu/activated carbon catalysts in the oxidative carbonylation of methanol. J Therm Anal Calorim 120:1929–1939

    Article  Google Scholar 

  57. Espinós J, Morales J, Barranco A, Caballero A, Holgado J, González-Elipe A (2002) Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J Phys Chem B 106:6921–6929

    Article  Google Scholar 

  58. Teo J, Chang Y, Zeng H (2006) Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 22:7369–7377

    Article  Google Scholar 

  59. Wang W, Wang G, Wang X, Zhan Y, Liu Y, Zheng C (2002) Synthesis and characterization of Cu2O nanowires by a novel reduction route. Adv Mater 14:67–69

    Article  Google Scholar 

  60. Raimondi F, Geissler K, Wambach J, Wokaun A (2002) Hydrogen production by methanol reforming: post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD. Appl Surf Sci 189:59–71

    Article  Google Scholar 

  61. Wang R, Li Z, Zheng H, Xie K (2010) Preparation of chlorine-free Cu/AC catalyst and its catalytic properties for vapor phase oxidative carbonylation of methanol. Chinses J Catal 31:851–856

    Google Scholar 

  62. Ren J, Wang D, Pei Y, Qin Z, Lin J, Li Z (2013) Effects of lithium content on the structural properties and catalytic activities of CuLi/AC catalysts in the oxidative carbonylation of methanol to dimethyl carbonate. Chem J Chinses U 34:2594–2600

    Google Scholar 

  63. Zhang Y, Bell A (2008) The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y. J Catal 255:153–161

    Article  Google Scholar 

  64. Ren J, Yang J, Wang W, Guo H, Zuo Z, Lin J, Li Z (2015) A DFT study of DMC formation on Rh - doped Cu/AC surfaces. Int J Quantum Chem 115:853–858

    Article  Google Scholar 

  65. Ren J, Hao P, Sun W, Shi R, Liu S (2017) Ordered mesoporous silica-carbon-supported copper catalyst as an efficient and stable catalyst for catalytic oxidative carbonylation. Chem Eng J 328:673–682

    Article  Google Scholar 

  66. Sun W, Shi R, Wang X, Liu S, Han X, Zhao C, Li Z, Ren J (2017) Density-functional theory study of dimethyl carbonate synthesis by methanol oxidative carbonylation on single-atom Cu1/graphene catalyst. Appl Surf Sci 425:291–300

    Article  Google Scholar 

  67. Shao M, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11:3714–3719

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by a grant from the National Natural Science Foundation of China (21376159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shi, R., Hao, P. et al. Influence of oxygen-containing groups of activated carbon aerogels on copper/activated carbon aerogels catalyst and synthesis of dimethyl carbonate. J Mater Sci 53, 1833–1850 (2018). https://doi.org/10.1007/s10853-017-1639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1639-8

Keywords

Navigation