Skip to main content
Log in

Nanocrystalline copper sulfide and copper selenide thin films with p-type metallic behavior

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper chalcogenide materials are interesting for multiple applications due to the feasibility of suiting their optical absorption and electrical conduction by the creation of copper vacancies. Here, Cu x S and Cu x Se nanocrystalline films with p-type conductivity have been obtained by heating evaporated copper layers of various thicknesses with elemental sulfur or selenium, at temperatures ranging from 250 to 400 °C. These preparation parameters determine the composition and the crystalline structure of the samples, which in turn control their morphology, optical and electrical properties. Thus, the surface roughness increases with the mean crystallite size, whereas the hole concentration increases as the copper atomic proportion (or x value) decreases. Owing to the high carrier densities achieved, around 1022 cm−3, the samples show a metallic behavior with plasmonic absorption in the near infrared and electrical transport dominated by phonon scattering. Apart from such common behavior, some differences have been established between the sulfide and selenide films. One is the superior thermal stability of hexagonal CuS, present in all the temperature range, with respect to hexagonal CuSe, which evolves to cubic Cu1.8Se above 300 °C. Other is about the bandgap, wider for the sulfide than selenide samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kundu J, Pradhan D (2014) Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies. ACS Appl Mater Interfaces 6:1823–1834. doi:10.1021/am404829g

    Article  Google Scholar 

  2. Sagade AA, Sharma R (2008) Copper sulphide (Cu x S) as an ammonia gas sensor working at room temperature. Sens Actuators B Chem 133:135–143. doi:10.1016/j.snb.2008.02.015

    Article  Google Scholar 

  3. Chen YH, Davoisne C, Tarascon JM, Guery C (2012) Growth of single-crystal copper sulfide thin films via electrodeposition in ionic liquid media for lithium ion batteries. J Mater Chem 22:5295–5299. doi:10.1039/C2jm16692e

    Article  Google Scholar 

  4. Aguilar JO, Gomez-Daza O, Brito LA et al (2005) Optical and mechanical characteristics of clear and solar control laminated glass using zinc sulphide and copper sulphide thin films. Surf Coat Technol 200:2557–2565. doi:10.1016/j.surfcoat.2004.10.140

    Article  Google Scholar 

  5. Zhang H, Wang C, Peng W et al (2016) Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode. Nano Energy 23:60–69. doi:10.1016/j.nanoen.2016.03.009

    Article  Google Scholar 

  6. Korala L, McGoffin JT, Prieto AL (2016) Enhanced conductivity in CZTS/Cu2−x Se nanocrystal thin films: growth of a conductive shell. ACS Appl Mater Interfaces 8:4911–4917. doi:10.1021/acsami.5b11037

    Article  Google Scholar 

  7. Blachnik R, Müller A (2000) The formation of Cu2S from the elements: I. Copper used in form of powders. Thermochim Acta 361:31–52

    Article  Google Scholar 

  8. Glazov VM, Pashinkin AS, Fedorov VA (2000) Phase equilibria in the Cu–Se system. Inorg Mater 36:641–652. doi:10.1007/BF02758413

    Article  Google Scholar 

  9. Zhang Y, Wang Y, Xi L et al (2014) Electronic structure of antifluorite Cu2X (X = S, Se, Te) within the modified Becke–Johnson potential plus an on-site Coulomb U. J Chem Phys. doi:10.1063/1.4865257

    Google Scholar 

  10. Choi JH, Han YK (2015) Structural, electronic, and optical properties of bulk Cu2Se. Curr Appl Phys 15:1417–1420. doi:10.1016/j.cap.2015.08.006

    Article  Google Scholar 

  11. Liu G, Schulmeyer T, Brötz J et al (2003) Interface properties and band alignment of Cu2S/CdS thin film solar cells. Thin Solid Films 431–432:477–482. doi:10.1016/S0040-6090(03)00190-1

    Article  Google Scholar 

  12. Lukashev P, Lambrecht WRL, Kotani T, van Schilfgaarde M (2007) Electronic and crystal structure of Cu2−x S: full-potential electronic structure calculations. Phys Rev B 76:195202. doi:10.1103/PhysRevB.76.195202

    Article  Google Scholar 

  13. Coughlan C, Ibáñez M, Dobrozhan O et al (2017) Compound copper chalcogenide nanocrystals. Chem Rev. doi:10.1021/acs.chemrev.6b00376

    Google Scholar 

  14. He Y, Polity A, Österreicher I (2001) Hall effect and surface characterization of Cu2S and CuS films deposited by RF reactive sputtering. Phys B Condens Matter 310:1069–1073

    Article  Google Scholar 

  15. Wang L, Ren B, Weng L et al (2015) Metal-semiconductor transition in CuS–Cu1.8S mixed phase thin films. Vacuum 112:70–72. doi:10.1016/j.vacuum.2014.11.018

    Article  Google Scholar 

  16. Comin A, Manna L (2014) New materials for tunable plasmonic colloidal nanocrystals. Chem Soc Rev 43:3957–3975. doi:10.1039/c3cs60265f

    Article  Google Scholar 

  17. Jain SC, McGregor JM, Roulston DJ (1990) Band-gap narrowing in novel III–V semiconductors. J Appl Phys 88:3747–3749

    Article  Google Scholar 

  18. Zhao Y, Pan H, Lou Y et al (2009) Plasmonic Cu2−x S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J Am Chem Soc 131:4253–4261. doi:10.1021/ja805655b

    Article  Google Scholar 

  19. Dorfs D, Härtling T, Miszta K et al (2011) Reversible tunability of the NIR valence band plasmon resonance in Cu2−x Se nanocrystals. J Am Chem Soc 133:11175–11180. doi:10.1021/ja2016284

    Article  Google Scholar 

  20. Kriegel I, Jiang C, Rodríguez-Fernández J et al (2012) Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J Am Chem Soc 134:1583–1590. doi:10.1021/ja207798q

    Article  Google Scholar 

  21. Xie Y, Carbone L, Nobile C et al (2013) Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling. ACS Nano 7:7352–7369. doi:10.1021/nn403035s

    Article  Google Scholar 

  22. West PR, Ishii S, Naik GV et al (2010) Searching for better plasmonic materials. Laser Photonics Rev 4:795–808. doi:10.1002/lpor.200900055

    Article  Google Scholar 

  23. Teranishi T, Eguchi M, Kanehara M, Gwo S (2011) Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region. J Mater Chem 21:10238. doi:10.1039/c0jm04545d

    Article  Google Scholar 

  24. Rafea MA, Farag AAM, Roushdy N (2012) Controlling the crystallite size and influence of the film thickness on the optical and electrical characteristics of nanocrystalline Cu2S films. Mater Res Bull 47:257–266. doi:10.1016/j.materresbull.2011.11.035

    Article  Google Scholar 

  25. Dhondge AD, Gosavi SR, Gosavi NM (2015) Influence of thickness on the photosensing properties of chemically synthesized copper sulfide thin films. World J Condens Matter Phys 5:1–9

    Article  Google Scholar 

  26. Dhanam M, Manoj PK, Prabhu RR (2005) High-temperature conductivity in chemical bath deposited copper selenide thin films. J Cryst Growth 280:425–435. doi:10.1016/j.jcrysgro.2005.01.111

    Article  Google Scholar 

  27. Franzen S (2008) Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J Phys Chem C 112:6027–6032. doi:10.1021/jp7097813

    Article  Google Scholar 

  28. Losego MD, Efremenko AY, Rhodes CL et al (2009) Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance. J Appl Phys 106:24903. doi:10.1063/1.3174440

    Article  Google Scholar 

  29. Zang Z, Nakamura A, Temmyo J (2013) Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt Express 21:11448. doi:10.1364/OE.21.011448

    Article  Google Scholar 

  30. Zang Z, Nakamura A, Temmyo J (2013) Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature. Mater Lett 92:188–191. doi:10.1016/j.matlet.2012.10.083

    Article  Google Scholar 

  31. Caballero R, Guillén C, Gutiérrez MT, Kaufmann CA (2006) CuIn1−x Ga x Se2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers. Prog Photovolt Res Appl 14:145–153

    Article  Google Scholar 

  32. López-García J, Placidi M, Fontané X et al (2015) CuIn1−x Al x Se2 thin film solar cells with depth gradient composition prepared by selenization of evaporated metallic precursors. Sol Energy Mater Sol Cells 132:245–251. doi:10.1016/j.solmat.2014.09.003

    Article  Google Scholar 

  33. López-García J, Guillén C (2009) Adjustment of the selenium amount provided during formation of CuInSe2 thin films from the metallic precursors. Phys Status Solidi Appl Mater Sci 206:84–90

    Article  Google Scholar 

  34. Xue MZ, Zhou YN, Zhang B et al (2006) Fabrication and electrochemical characterization of copper selenide thin films by pulsed laser deposition. J Electrochem Soc 153:A2262–A2268. doi:10.1149/1.2358854

    Article  Google Scholar 

  35. Liu L, Liu C, Fu W et al (2016) Phase transformations of copper sulfide nanocrystals: towards highly efficient quantum-dot-sensitized solar cells. ChemPhysChem 17:771–776. doi:10.1002/cphc.201500627

    Article  Google Scholar 

  36. Selivanov EN, Gulyaeva RI, Vershinin AD (2007) Thermal expansion and phase transformations of copper sulfides. Inorg Mater 43:573–578. doi:10.1134/S0020168507060027

    Article  Google Scholar 

  37. Skomorokhov AN, Trots DM, Knapp M et al (2006) Structural behaviour of beta-Cu2−x Se (x = 0, 0.15, 0.25) in dependence on temperature studied by synchrotron powder diffraction. J Alloys Compd 421:64–71. doi:10.1016/j.jallcom.2005.10.079

    Article  Google Scholar 

  38. Jackson AJ, Tiana D, Walsh A (2016) A universal chemical potential for sulfur vapours. Chem Sci 7:1082–1092. doi:10.1039/C5SC03088A

    Article  Google Scholar 

  39. Olin A, Noläng B, Osadchii EG et al (2005) Chemical thermodynamics of selenium. Elsevier, Amsterdam

    Google Scholar 

  40. Gobeaut A, Laffont L, Tarascon JM et al (2009) Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films. Thin Solid Films 517:4436–4442. doi:10.1016/j.tsf.2009.01.043

    Article  Google Scholar 

  41. Cuevas A, Romero R, Leinen D et al (2015) Effect of the stoichiometry of Cu x S thin films on the optical and electrical properties and the solar thermal performance. Sol Energy Mater Sol Cells 134:199–208. doi:10.1016/j.solmat.2014.11.048

    Article  Google Scholar 

  42. Li J, Jiu TG, Tao GH et al (2014) Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells. J Colloid Interface Sci 419:142–147. doi:10.1016/j.jcis.2013.12.057

    Article  Google Scholar 

  43. Wu Y, Wadia C, Ma W et al (2008) Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett 8:2551–2555. doi:10.1021/nl801817d

    Article  Google Scholar 

  44. Luther JM, Jain PK, Ewers T, Alivisatos AP (2011) Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater 10:361–366. doi:10.1038/nmat3004

    Article  Google Scholar 

  45. Isac L, Popovici I, Enesca A, Duta A (2010) Copper sulfide (Cu x S) thin films as possible p-type absorbers in 3D solar cells. Energy Proc 2:71–78. doi:10.1016/j.egypro.2010.07.013

    Article  Google Scholar 

  46. Sharma R, Sagade AA, Gosavi SR et al (2009) Effect of high electronic energy loss of 100 MeV gold heavy ions in copper chalcogenides (CuX, X = S, Se) at nanoscale: opto-electronic properties study. J Non Cryst Solids 355:1653–1658. doi:10.1016/j.jnoncrysol.2009.05.055

    Article  Google Scholar 

  47. Viezbicke BD, Patel S, Davis BE, Birnie DP (2015) Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys Status Solidi 252:1700–1710. doi:10.1002/pssb.201552007

    Article  Google Scholar 

  48. Barnabe A, Thimont Y, Lalanne M et al (2015) P-type conducting transparent characteristics of delafossite Mg-doped CuCrO2 thin films prepared by RF-sputtering. J Mater Chem C 3:6012–6024. doi:10.1039/C5TC01070E

    Article  Google Scholar 

  49. Guillén C, Herrero J (2016) Structural and plasmonic characteristics of sputtered SnO2: Sb and ZnO: Al thin films as a function of their thickness. J Mater Sci 51:7276–7285. doi:10.1007/s10853-016-0010-9

    Article  Google Scholar 

  50. Hsu SW, Ngo C, Tao AR (2014) Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. Nano Lett 14:2372–2380. doi:10.1021/nl404777h

    Article  Google Scholar 

  51. Liu M, Xue X, Ghosh C et al (2015) Room-temperature synthesis of covellite nanoplatelets with broadly tunable localized surface plasmon resonance. Chem Mater 27:2584–2590. doi:10.1021/acs.chemmater.5b00270

    Article  Google Scholar 

  52. Quintana-Ramirez PV, Arenas-Arrocena MC, Santos-Cruz J et al (2014) Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: morphological, optical and electrical properties. Beilstein J Nanotechnol 5:1542–1552. doi:10.3762/bjnano.5.166

    Article  Google Scholar 

  53. Grozdanov I, Najdoski M (1995) Optical and electrical properties of copper sulfide films of variable composition. J Solid State Chem 114:469–475. doi:10.1006/jssc.1995.1070

    Article  Google Scholar 

  54. Rodríguez-Lazcano Y, Martínez H, Calixto-Rodríguez M, Núñez Rodríguez A (2009) Properties of CuS thin films treated in air plasma. Thin Solid Films 517:5951–5955. doi:10.1016/j.tsf.2009.03.075

    Article  Google Scholar 

  55. Haram SK, Santhanam KSV (1994) Electroless deposition of orthorhombic copper (I) selenide and its room temperature phase transformation to cubic structure. Thin Solid Films 238:21–26. doi:10.1016/0040-6090(94)90642-4

    Article  Google Scholar 

  56. Hu Y, Afzaal M, Malik MA, O’Brien P (2006) Deposition of copper selenide thin films and nanoparticles. J Cryst Growth 297:61–65. doi:10.1016/j.jcrysgro.2006.08.038

    Article  Google Scholar 

  57. Bhuvaneswari PV, Ramamurthi K, Ramesh Babu R, Moorthy Babu S (2015) Structural, morphological, optical and electrical properties of Cu0.87Se thin films coated by electron beam evaporation method. Appl Phys A 120:1113–1120. doi:10.1007/s00339-015-9286-x

    Article  Google Scholar 

  58. Lu JG, Fujita S, Kawaharamura T et al (2007) Carrier concentration dependence of band gap shift in n-type ZnO: Al films. J Appl Phys 101:83705. doi:10.1063/1.2721374

    Article  Google Scholar 

  59. Kim WM, Kim JS, Jeong JH et al (2013) Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters. Thin Solid Films 531:430–435. doi:10.1016/j.tsf.2013.01.078

    Article  Google Scholar 

  60. Kasap S, Koughia C, Ruda H, Johanson R (2006) Electrical conduction in metals and semiconductors. In: Kasap S (ed) Springer handbook of electronic and photonic materials. Springer, Boston, pp 19–45

    Chapter  Google Scholar 

  61. Ellmer K (2001) Resistivity of polycrystalline zinc oxide films: current status and physical limit. J Phys D Appl Phys 34:3097–3108. doi:10.1088/0022-3727/34/21/301

    Article  Google Scholar 

  62. Mendelsberg RJ, Garcia G, Li H et al (2012) Understanding the plasmon resonance in ensembles of degenerately doped semiconductor nanocrystals. J Phys Chem C 116:12226–12231. doi:10.1021/jp302732s

    Article  Google Scholar 

  63. Ruda HE (1991) Compensation and transport characteristics of n-ZnTe. J Phys D Appl Phys 24:1158–1162. doi:10.1088/0022-3727/24/7/021

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Ministry of Economy, Industry and Competitiveness through the MAT2015-66649-R project and the CIEMAT Photovoltaic Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Guillén.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillén, C., Herrero, J. Nanocrystalline copper sulfide and copper selenide thin films with p-type metallic behavior. J Mater Sci 52, 13886–13896 (2017). https://doi.org/10.1007/s10853-017-1489-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1489-4

Keywords

Navigation