Skip to main content
Log in

A benign synthesis of alane by the composition-controlled mechanochemical reaction of sodium hydride and aluminum chloride

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid-state mechanochemical synthesis of alane (AlH3) starting from sodium hydride (NaH) and aluminum chloride (AlCl3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction, which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl3 system presents some subtle differences compared to LiH–AlCl3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. Complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cipriani G, Di Dio V, Genduso F, La Cascia D, Liga R, Miceli R, Galluzzo GR (2014) Perspective on hydrogen energy carrier and its automotive applications. Int J Hydrogen Energy 39(16):8482–8494

    Article  Google Scholar 

  2. McWhorter S, Read C, Ordaz G, Stetson N (2011) Materials-based hydrogen storage: attributes for near-term, early market PEM fuel cells. Curr Opin Solid State Mater Sci 15(2):29–38

    Article  Google Scholar 

  3. US Department of Energy and Office of Energy Efficiency and Renewable Energy (2015) Fuel cell technologies office: multiyear research development and demonstration plan: planned program activities for 2011–2020, p 3.3-(8-3.3-15). https://energy.gov/sites/prod/files/2015/05/f22/fcto_myrdd_storage.pdf

  4. Brooks KP, Semelsberger TA, Simmons KL, van Hassel B (2014) Slurry-based chemical hydrogen storage systems for automotive fuel cell applications. J Power Sources 268:950–959

    Article  Google Scholar 

  5. Klebanoff L, Keller J (2012) Final report for the DOE metal hydride center of excellence. Sandia National Laboratories, Albuquerque, NM, Report No. SAND2012-0786

  6. Graetz J, Reilly JJ, Yartys VA, Maehlen JP, Bulychev BM, Antonov VE, Tarasov BP, Gabis IE (2011) Aluminum hydride as a hydrogen and energy storage material: past, present and future. J Alloys Compd 509:S517–S528

    Article  Google Scholar 

  7. Xu B, Liu J, Zhao L, Yan L (2013) Theoretical study on the structure and stability of aluminum hydride (Aln H3n) clusters. J Mater Sci 48(6):2647–2658. doi:10.1007/s10853-012-7058-y

    Article  Google Scholar 

  8. Wang L-L, Herwadkar A, Reich JM, Johnson DD, House SD, Pena-Martin P, Rockett AA, Robertson IM, Gupta S, Pecharsky VK (2016) Towards direct synthesis of alane: a predicted defect-mediated pathway confirmed experimentally. Chemsuschem 9(17):2358–2364

    Article  Google Scholar 

  9. Brower FM, Matzek NE, Reigler PF, Rinn HW, Roberts CB, Schmidt DL, Snover JA, Terada K (1976) Preparation and properties of aluminum hydride. J Am Chem Soc 98(9):2450–2453

    Article  Google Scholar 

  10. Finholt AE, Bond AC Jr, Schlesinger HI (1947) Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry. J Am Chem Soc 69(5):1199–1203

    Article  Google Scholar 

  11. Sinke GC, Walker LC, Oetting FL, Stull DR (1967) Thermodynamic properties of aluminum hydride. J Chem Phys 47(8):2759–2761

    Article  Google Scholar 

  12. Chizinsky G, Evans GG, Gibb TR Jr, Rice MJ Jr (1955) Non-solvated aluminum hydride. J Am Chem Soc 77(11):3164–3165

    Article  Google Scholar 

  13. Matzek N, Musinski D (1974) Aluminum hydride in hexagonal or rhombohedral crystalline form. U.S. Patent No. 3,819,819

  14. Wikipedia, Abundance of elements in Earth’s crust. https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth’s_crust

  15. Klemm A, Hartmann G, Lange L (2012) Sodium and sodium alloys. Ullmann’s Encyclopedia of Industrial Chemistry

  16. Kraus T, Scardera M (1974) Preparation of AlH3 via NaAlH4–AlH3 in ether-toluene. U.S. Patent No. 3,857,930

  17. Ashby E, Taylor W, Winkler D (1974) Aluminum hydride product. U.S. Patent No. 3,829,390

  18. Bulychev BM, Verbetskii VN, Storozhenko PA (2008) “Direct” synthesis of unsolvated aluminum hydride involving Lewis and Bronsted acids. Russ J Inorg Chem 53(7):1000–1005

    Article  Google Scholar 

  19. Dinh LV, Knight DA, Paskevicius M, Buckley CE, Zidan R (2012) Novel methods for synthesizing halide-free alane without the formation of adducts. Appl Phys A 107(1):173–181

    Article  Google Scholar 

  20. Duan C, Hu L, Sun Y, Zhou H, Yu H (2015) An insight into the process and mechanism of a mechanically activated reaction for synthesizing AlH3 nano-composites. Dalton T 44(37):16251–16255

    Article  Google Scholar 

  21. Hlova IZ, Gupta S, Goldston JF, Kobayashi T, Pruski M, Pecharsky VK (2014) Dry mechanochemical synthesis of alane from LiH and AlCl3. Faraday Discuss 170:137–153

    Article  Google Scholar 

  22. Gupta S, Kobayashi T, Hlova IZ, Goldston JF, Pruski M, Pecharsky VK (2014) Solvent-free mechanochemical synthesis of alane, AlH3: effect of pressure on the reaction pathway. Green Chem 16(9):4378–4388

    Article  Google Scholar 

  23. Brinks HW, Istad-Lem A, Hauback BC (2006) Mechanochemical synthesis and crystal structure of α’-AlD3 and α-AlD3. J Phys Chem B 110(51):25833–25837

    Article  Google Scholar 

  24. Paskevicius M, Sheppard DA, Buckley CE (2009) Characterization of mechanochemically synthesized alane (AlH3) nanoparticles. J Alloys Compd 487(1):370–376

    Article  Google Scholar 

  25. Wiench JW, Balema VP, Pecharsky VK, Pruski M (2004) Solid-state 27Al NMR investigation of thermal decomposition of LiAlH4. J Solid State Chem 177(3):648–653

    Article  Google Scholar 

  26. Freude ED, Haase J (1993) Quadrupole effects in solid-state nuclear magnetic resonance. NMR-Basic Princ Prog 29:1–90

    Article  Google Scholar 

  27. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958

    Article  Google Scholar 

  28. Harris RK, Becker ED, Cabral De Menezes SM, Granger P, Hoffman RE, Zilm KW (2008) Further conventions for NMR shielding and chemical shifts (IUPAC recommendations 2008). Pure Appl Chem 80:59–84

    Article  Google Scholar 

  29. The International Center for Diffraction Data (2014) PDF-00-005-0628

  30. The International Center for Diffraction Data (2014) PDF-00-023-0649

  31. Baenziger NC (1951) The crystal structure of NaAlCl4. Acta Crystallogr 4(3):216–219

    Article  Google Scholar 

  32. The International Center for Diffraction Data (2014) PDF-00-054-0409

  33. The International Center for Diffraction Data (2014) PDF-00-022-0010

  34. The International Center for Diffraction Data (2014) PDF-00-022-1337

  35. The International Center for Diffraction Data (2014) PDF-00-042-0786

  36. Huot J, Boily S, Güther V, Schulz R (1999) Synthesis of Na3AlH6 and Na2LiAlH6 by mechanical alloying. J Alloys Compd 283(1–2):304–306

    Article  Google Scholar 

  37. Singh NK, Kobayashi T, Dolotko O, Wiench JW, Pruski M, Pecharsky VK (2012) Mechanochemical transformations in NaNH2–MgH2 mixtures. J Alloys Compd 513:324–327

    Article  Google Scholar 

  38. Dolotko O, Zhang H, Ugurlu O, Wiench JW, Pruski M, Chumbley LS, Pecharsky VK (2007) Mechanochemical transformations in Li(Na)AlH4-Li(Na)NH2 systems. Acta Mater 55(9):3121–3130

    Article  Google Scholar 

  39. Bowman RC, Hwang JC (2006) Nuclear magnetic resonance studies of hydrogen storage materials. Mater Matter 2(2):29–31

    Google Scholar 

  40. Humphries TD, Munroe KT, DeWinter TM, Jensen CM, McGrady GS (2013) NMR spectroscopic and thermodynamic studies of the etherate and the α, α′, and γ phases of AlH3. Int J Hydrogen Energy 38(11):4577–4586

    Article  Google Scholar 

  41. Gupta S, Pecharsky VK, Kobayashi T, Pruski M, Hlova I (2015) Mechanochemical synthesis of alane PCT application WO2015123438 A1

  42. Sartori S, Istad-Lem A, Brinks HW, Hauback BC (2009) Mechanochemical synthesis of alane. Int J Hydrogen Energy 34(15):6350–6356

    Article  Google Scholar 

  43. Beattie SD, McGrady GS (2009) Hydrogen desorption studies of NaAlH4 and LiAlH4 by in situ heating in an ESEM. Int J Hydrogen Energy 34(22):9151–9156

    Article  Google Scholar 

  44. Zaluska A, Zaluski L, Ström-Olsen JO (2000) Sodium alanates for reversible hydrogen storage. J Alloys Compd 298(1):125–134

    Article  Google Scholar 

  45. Varin RA, Czujko T, Wronski ZS (2009) Nanomaterials for solid state hydrogen storage. Springer Science & Business Media, New York

    Book  Google Scholar 

  46. Sandrock G, Reilly J, Graetz J, Zhou WM, Johnson J, Wegrzyn J (2005) Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles. J Appl Phys A 80(4):687–690

    Article  Google Scholar 

  47. Mikheeva VI, Fedneva EM, Shnitkova ZL (1956) The reaction between aluminum chloride and lithium hydride in organic solvents. Zh Neorg Khim 1(11):8–19

    Google Scholar 

Download references

Acknowledgements

Research was supported by the Division of Materials Sciences and Engineering of Basic Energy Sciences Program of the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalabh Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hlova, I., Goldston, J.F., Gupta, S. et al. A benign synthesis of alane by the composition-controlled mechanochemical reaction of sodium hydride and aluminum chloride. J Mater Sci 52, 11900–11910 (2017). https://doi.org/10.1007/s10853-017-1219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1219-y

Keywords

Navigation