Skip to main content

Advertisement

Log in

Thermoelectric and mechanical properties of ZnSb/SiC nanocomposites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Intermetallic compound ZnSb is a promising thermoelectric (TE) material with the advantages of low toxicity, abundance, and low cost; however, the relatively low figure of merit ZT and the brittleness of ZnSb limit its applications in TE devices. In this study, ZnSb/SiC nanocomposites were synthesized in order to improve both the TE and mechanical properties of ZnSb. ZnSb-based nanocomposites with x vol% SiC nanoparticles (x = 0, 0.3, 0.5, and 0.7) were prepared by mechanical alloying and spark plasma sintering. The power factor of ZnSb/SiC nanocomposite with 0.3 vol% SiC is increased. The thermal conductivity of all ZnSb/SiC nanocomposites is decreased due to the increase of interface scattering for phonons. More importantly, the fracture toughness of the nanocomposites is enhanced due to the addition of SiC. The largest ZT value and fracture toughness are found in the sample with 0.7 vol% SiC. The maximum ZT value of 0.68 is obtained at 400 °C, which is 35 % higher than that of the reference sample without SiC. The largest fracture toughness is 0.64 MPa m1/2, which is 31 % larger than that of the reference sample. The experimental data demonstrate that ZnSb/SiC nanocomposites with simultaneous enhancement of TE and mechanical properties are favorable for practical TE applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wang H, Hwang J, Snedaker ML, Kim IH, Kang C, Kim J, Stucky GD, Bowers J, Kim W (2015) High thermoelectric performance of a heterogeneous PbTe nanocomposite. Chem Mater 27:944–949. doi:10.1021/cm5042138

    Article  Google Scholar 

  2. Zhang Q, Ai X, Wang L, Chang Y, Luo W, Jiang W, Chen L (2015) Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater 25:966–976. doi:10.1002/adfm.201402663

    Article  Google Scholar 

  3. He Y, Day T, Zhang T, Liu H, Shi X, Chen L, Snyder GJ (2014) High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv Mater 26:3974–3978. doi:10.1002/adma.201400515

    Article  Google Scholar 

  4. Zhao LD, Lo SH, Zhang YS, Sun H, Tan GJ, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–377. doi:10.1038/nature13184

    Article  Google Scholar 

  5. Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan XA, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638. doi:10.1126/science.1156446

    Article  Google Scholar 

  6. Xiong D-B, Okamoto NL, Inui H (2013) Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag3Sb. Scr Mater 69:397–400. doi:10.1016/j.scriptamat.2013.05.029

    Article  Google Scholar 

  7. Fedorov MI, Prokof’eva LV, Pshenay-Severin DA, Shabaldin AA, Konstantinov PP (2014) New interest in intermetallic compound ZnSb. J Electron Mater 43:2314–2319. doi:10.1007/s11664-014-3053-1

    Article  Google Scholar 

  8. Valset K, Bottger PHM, Tafto J, Finstad TG (2012) Thermoelectric properties of Cu doped ZnSb containing Zn3P2 particles. J Appl Phys 111:023703. doi:10.1063/1.3675505

    Article  Google Scholar 

  9. Sottmann J, Valset K, Karlsen OB, Tafto J (2013) Synthesis and measurement of the thermoelectric properties of multiphase composites: ZnSb matrix with Zn4Sb3, Zn3P2, and Cu5Zn8. J Electron Mater 42:1820–1826. doi:10.1007/s11664-012-2441-7

    Article  Google Scholar 

  10. Snyder GJ, Christensen M, Nishibori E, Caillat T, Iversen BB (2004) Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat Mater 3:458–463. doi:10.1038/nmat1154

    Article  Google Scholar 

  11. Caillat T, Fleurial J-P, Borshchevsky A (1997) Preparation and thermoelectric properties of semiconducting Zn4Sb3. J Phys Chem Solids 58:1119–1125. doi:10.1016/S0022-3697(96)00228-4

    Article  Google Scholar 

  12. Zhu GH, Liu WS, Lan YC, Joshi G, Wang H, Chen G, Ren ZF (2013) The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound. Nano Energy 2:1172–1178. doi:10.1016/j.nanoen.2013.04.010

    Article  Google Scholar 

  13. Wang Q, Qin X, Li D, Zou T (2013) Enhancement of thermopower and thermoelectric performance through resonant distortion of electronic density of states of β-Zn4Sb3 doped with Sm. Appl Phys Lett 102:154101. doi:10.1063/1.4801851

    Article  Google Scholar 

  14. Li J-B, Record M-C, Tedenac J-C (2007) A thermodynamic assessment of the Sb–Zn system. J Alloys Compd 438:171–177. doi:10.1016/j.jallcom.2006.08.035

    Article  Google Scholar 

  15. Adjadj F, E-d Belbacha, Bouharkat M (2007) Differential calorimetric analysis of the binary system Sb–Zn. J Alloys Compd 430:85–91. doi:10.1016/j.jallcom.2006.04.051

    Article  Google Scholar 

  16. Mozharivskyj Y, Pecharsky AO, Bud’ko S, Miller GJ (2004) Promising thermoelectric material: Zn4Sb3 or Zn6−δSb5. Its composition, structure, stability, and polymorphs. Structure and stability of Zn1-δSb. Chem Mater 16:1580–1589. doi:10.1021/cm035274a

    Article  Google Scholar 

  17. Yin H, Christensen M, Pedersen B, Nishibori E, Aoyagi S, Iversen BB (2010) Thermal stability of thermoelectric Zn4Sb3. J Electron Mater 39:1957–1959. doi:10.1007/s11664-009-1053-3

    Article  Google Scholar 

  18. Yin H, Johnsen S, Borup KA, Kato K, Takata M, Iversen BB (2013) Highly enhanced thermal stability of Zn4Sb3 nanocomposites. Chem Commun 49:6540–6542. doi:10.1039/C3CC42340A

    Article  Google Scholar 

  19. Zhang T, Zhou K, Li XF, Chen ZQ, Su XL, Tang XF (2016) Reversible structural transition in spark plasma-sintered thermoelectric Zn4Sb3. J Mater Sci 51:2041–2048. doi:10.1007/s10853-015-9514-y

    Article  Google Scholar 

  20. Valset K, Song X, Finstad TG (2015) A study of transport properties in Cu and P doped ZnSb. J Appl Phys 117:045709. doi:10.1063/1.4906404

    Article  Google Scholar 

  21. Guo Q, Luo S (2015) Improved thermoelectric efficiency in p-type ZnSb through Zn deficiency. Funct Mater Lett 8:1550028. doi:10.1142/S1793604715500289

    Article  Google Scholar 

  22. Niedziolka K, Jund P (2015) Influence of the exchange-correlation functional on the electronic properties of ZnSb as a promising thermoelectric material. J Electron Mater 44:1540–1546. doi:10.1007/s11664-014-3459-9

    Article  Google Scholar 

  23. Song X, Valset K, Graff JS, Thogersen A, Gunnaes AE, Luxsacumar S, Lovvik OM, Snyder GJ, Finstad TG (2015) Nanostructuring of undoped ZnSb by cryo-milling. J Electron Mater 44:2578–2584. doi:10.1007/s11664-015-3708-6

    Article  Google Scholar 

  24. Ma JM, Firdosy SA, Kaner RB, Fleurial J-P, Ravi VA (2014) Hardness and fracture toughness of thermoelectric La3−x Te4. J Mater Sci 49:1150–1156. doi:10.1007/s10853-013-7794-7

    Article  Google Scholar 

  25. Akao T, Fujiwara Y, Tarui Y, Onda T, Chen Z-C (2014) Fabrication of Zn4Sb3 bulk thermoelectric materials reinforced with SiC whiskers. J Electron Mater 43:2047–2052. doi:10.1007/s11664-013-2946-8

    Article  Google Scholar 

  26. Liu DW, Li JF, Chen C, Zhang BP, Li L (2010) Fabrication and evaluation of microscale thermoelectric modules of Bi2Te3-based alloys. J Micromech Microeng 20:125031. doi:10.1088/0960-1317/20/12/125031

    Article  Google Scholar 

  27. Zhao LD, Zhang BP, Li JF, Zhou M, Liu WS, Liu J (2008) Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd 455:259–264. doi:10.1016/j.jallcom.2007.01.015

    Article  Google Scholar 

  28. Schmidt RD, Fan XF, Case ED, Sarac PB (2015) Mechanical properties of Mg2Si thermoelectric materials with the addition of 0–4 vol% silicon carbide nanoparticles (SiCNP). J Mater Sci 50:4034–4046. doi:10.1007/s10853-015-8960-x

    Article  Google Scholar 

  29. Schmidt RD, Case ED, Ni JE, Trejo RM, Lara-Curzio E, Korkosz RJ, Kanatzidis MG (2013) High-temperature elastic moduli of thermoelectric SnTex ySiC nanoparticulate composites. J Mater Sci 48:8244–8258. doi:10.1007/s10853-013-7637-6

    Article  Google Scholar 

  30. Hicks L, Harman T, Sun X, Dresselhaus M (1996) Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 53:R10493–R10496. doi:10.1103/PhysRevB.53.R10493

    Article  Google Scholar 

  31. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602. doi:10.1038/35098012

    Article  Google Scholar 

  32. Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821. doi:10.1126/science.1092963

    Article  Google Scholar 

  33. Li JH, Tan Q, Li JF, Liu DW, Li F, Li ZY, Zou MM, Wang K (2013) BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater 23:4317–4323. doi:10.1002/adfm.201300146

    Article  Google Scholar 

  34. Li ZY, Li JF, Zhao WY, Tan Q, Wei TR, Wu CF, Xing ZB (2014) PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion. Appl Phys Lett 104:113905. doi:10.1063/1.4869220

    Article  Google Scholar 

  35. Misra DK, Rajput A, Bhardwaj A, Chauhan NS, Singh S (2015) Enhanced power factor and reduced thermal conductivity of a half-Heusler derivative Ti9Ni7Sn8: a bulk nanocomposite thermoelectric material. Appl Phys Lett 106:103901. doi:10.1063/1.4914504

    Article  Google Scholar 

  36. Dresselhaus MS, Gang Chen, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053. doi:10.1002/adma.200600527

    Article  Google Scholar 

  37. Niihara K (1991) New design concept of structural ceramics—ceramic nanocomposites. J Ceram Soc Jpn 99:974–982. doi:10.2109/jcersj.99.974

    Article  Google Scholar 

  38. Wang L, Jiang W, Chen L (2004) Fabrication and characterization of nano-SiC particles reinforced TiC/SiCnano composites. Mater Lett 58:1401–1404. doi:10.1016/j.matlet.2003.09.053

    Article  Google Scholar 

  39. Liu Q, Han W, Han J (2010) Influence of SiCnp content on the microstructure and mechanical properties of ZrB2–SiC nanocomposite. Scr Mater 63:581–584. doi:10.1016/j.scriptamat.2010.06.005

    Article  Google Scholar 

  40. Duan B, Zhai P, Wen P, Zhang S, Liu L, Zhang Q (2012) Enhanced thermoelectric and mechanical properties of Te-substituted skutterudite via nano-TiN dispersion. Scr Mater 67:372–375. doi:10.1016/j.scriptamat.2012.05.028

    Article  Google Scholar 

  41. Anstis G, Chantikul P, Lawn BR, Marshall D (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J Am Ceram Soc 64:533–538. doi:10.1111/j.1151-2916.1981.tb10320.x

    Article  Google Scholar 

  42. Hassan S, Gupta M (2007) Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J Alloys Compd 429:176–183. doi:10.1016/j.jallcom.2006.04.033

    Article  Google Scholar 

  43. Wang D, De Cicco MP, Li X (2012) Using diluted master nanocomposites to achieve grain refinement and mechanical property enhancement in as-cast Al–9Mg. Mater Sci Eng A 532:396–400. doi:10.1016/j.msea.2011.11.002

    Article  Google Scholar 

  44. Augustine G, Hobgood M, Balakrishna V, Dunne G, Hopkins R (1997) Physical vapor transport growth and properties of SiC monocrystals of 4H polytype. Phys Status Solidi B 202:137–148. doi:10.1002/1521-3951(199707)202:1<137:AID-PSSB137>3.0.CO;2-Y

    Article  Google Scholar 

  45. Goldsmid HJ (2009) Introduction to thermoelectricity. Springer, Heidelberg

    Google Scholar 

  46. Minnich A, Dresselhaus M, Ren Z, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479. doi:10.1039/b822664b

    Article  Google Scholar 

  47. Böttger P, Pomrehn GS, Snyder GJ, Finstad TG (2011) Doping of p-type ZnSb: single parabolic band model and impurity band conduction. Phys Status Solidi A 208:2753–2759. doi:10.1002/pssa.201127211

    Article  Google Scholar 

  48. Pan Y, Wei T-R, Cao Q, Li J-F (2015) Mechanically enhanced p-and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering. Mater Sci Eng B 197:75–81. doi:10.1016/j.mseb.2015.03.011

    Article  Google Scholar 

  49. May AF, Toberer ES, Saramat A, Snyder GJ (2009) Characterization and analysis of thermoelectric transport in n-type Ba8Ga16−x Ge30+x . Phys Rev B 80:125205. doi:10.1103/PhysRevB.80.125205

    Article  Google Scholar 

  50. Kvetková L, Duszová A, Hvizdoš P, Dusza J, Kun P, Balázsi C (2012) Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scr Mater 66:793–796. doi:10.1016/j.scriptamat.2012.02.009

    Article  Google Scholar 

  51. Awaji H, Choi S-M, Yagi E (2002) Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mech Mater 34:411–422. doi:10.1016/S0167-6636(02)00129-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51572149), the National Basic Research Program of China (Grant No. 2013CB632504), and National High Technology Research and Development Program of China (Grant No. 2012AA051104). We thank Prof. Jing-Feng Li and Prof. Xiao-Dong Wu at Tsinghua University for help with the synthesis of nanocomposites and heat capacity measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangliang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, F., Li, S., Wu, C. et al. Thermoelectric and mechanical properties of ZnSb/SiC nanocomposites. J Mater Sci 51, 5271–5280 (2016). https://doi.org/10.1007/s10853-016-9830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9830-x

Keywords

Navigation