Skip to main content
Log in

Epoxy Nanocomposites Modified with Functionalized Multiwalled Carbon Nanotubes

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes were modified by interaction with γ-aminopropyltriethoxysilane and were dispersed in an epoxy compound. The properties of multiwalled carbon nanotubes treated with γ-aminopropyltriethoxysilane were characterized by transmission electron microscopy and by Raman and Fourier IR spectroscopy. Multiwalled carbon nanotubes modified with γ-aminopropyltriethoxysilane are uniformly distributed in the bulk of the epoxy compound. Introduction of modified carbon nanotubes into the epoxy compound initiates curing of the epoxy oligomer and, in addition, leads to reinforcement of epoxy composites: The bending strength increases by 194%, the bending elastic modulus, by 137%, the tensile strength, by 108%, the tensile elastic modulus, by 52%, and the impact resilience, by 300% relative to the plasticized epoxy composite without multiwalled carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kosarli, M., Polymerou, A., Foteinidis, G., Vazouras, C., and Paipetis, A.S., Polymers, 2021, vol. 13, ID 2753. https://doi.org/10.3390/polym13162753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bao, X., Wu, F., and Wang, J., Polymers, 2021, vol. 13, ID 3332. https://doi.org/10.3390/polym13193332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Irshidat, M.R., Al-Saleh, M.H., and Almashagbeh, H., Mater. Des., 2016, vol. 89, pp. 225–234. https://doi.org/10.1016/j.matdes.2015.09.166

    Article  CAS  Google Scholar 

  4. Zhu, J., Kim, J., Peng, H., Margrave, J.L., Khabashesku, V.N., and Barrera, E.V., Nano Lett., 2003, no. 3, pp. 1107–1113. https://doi.org/10.1021/nl0342489

    Article  CAS  Google Scholar 

  5. Lavorgna, M., Romeo, V., Martone, A., Zarrelli, M., Giordano, M., Buonocore, G.G., Qu, M.Z., Fei, G.X., and Xia, H.S., Eur. Polym. J., 2013, vol. 49, pp. 428–438. https://doi.org/10.1016/j.eurpolymj.2012.10.003

    Article  CAS  Google Scholar 

  6. Shen, J.F., Huang, W.S., Wu, L.P., Hu, Y.Z., and Ye, M.X., Compos. Sci. Technol., 2007, vol. 67, pp. 3041–3050. https://doi.org/10.1016/j.compscitech.2007.04.025

    Article  CAS  Google Scholar 

  7. Shen, J.F., Huang, W.S., Wu, L.P., Hu, Y.Z., and Ye, M.X., Mater. Sci. Eng. A, 2007, vol. 464, pp. 151–156. https://doi.org/10.1016/j.msea.2007.02.091

    Article  CAS  Google Scholar 

  8. Choi, W.J., Powell, R.L., and Kim, D.S., Polym. Compos., 2009, vol. 30, pp. 415–421. https://doi.org/10.1002/pc.20571

    Article  CAS  Google Scholar 

  9. Saeb, M.R., Najafi, F., Bakhshandeh, E., Khonakdar, H.A., Mostafaiyan, M., Simon, F., Scheffler, C., and Mäder, E., Chem. Eng. J., 2015, vol. 259, pp. 117–125. https://doi.org/10.1016/j.cej.2014.07.116

    Article  CAS  Google Scholar 

  10. Wu, J., Guo, J., Zhang, Q., Gao, L., Li, H., Deng, H., Jiang, W., Sui, G., and Yang, X., Polym. Compos., 2018, vol. 39, pp. E733–E744. https://doi.org/10.1002/pc.24142

    Article  CAS  Google Scholar 

  11. Lomakin, S.M., Zaikov, G.E., Mikitaev, A.K., Kochnev, A.M., Stoyanov, O.V., Shkodich, V.F., and Naumov, S.V., Vestn. Kazansk. Tekhnol. Univ., 2012, no. 7, pp. 71–86.

    Google Scholar 

  12. Mostovoy, A.S., Nurtazina, A.S., Kadykova, Yu.A., and Bekeshev, A.Z., Inorg. Mater. Appl. Res., 2019, no. 10, pp. 1135–1139. https://doi.org/10.1134/S2075113319050228

    Article  Google Scholar 

  13. Mostovoi, A.S., Plakunova, E.V., and Panova, L.G., Int. Polym. Sci. Technol., 2013, vol. 40, no. 7, pp. 49–51. https://doi.org/10.1177/0307174X1304000711

    Article  Google Scholar 

  14. Bekeshev, A., Mostovoy, A., Tastanova, L., Kadykova, Y., Kalganova, S., and Lopukhova, M., Polymers, 2020, vol. 12, ID 1437. https://doi.org/10.3390/polym12071437

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (project no. 19-73-10133).

Author information

Authors and Affiliations

Authors

Contributions

A.S. Mostovoi: development of the formulations of epoxy composites modified with multiwalled carbon nanotubes and determination of their mechanical characteristics; A.V. Yakovlev and V.N. Tseluikin: treatment of multiwalled carbon nanotubes with γ-aminopropyltriethoxysilane and study of their properties; A.A. Strilets: evaluation of the softening point, heat resistance, and flame resistance of epoxy composites.

Corresponding author

Correspondence to A. S. Mostovoy.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 73–81, December, 2022 https://doi.org/10.31857/S0044461822010091

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostovoy, A.S., Yakovlev, A.V., Tseluikin, V.N. et al. Epoxy Nanocomposites Modified with Functionalized Multiwalled Carbon Nanotubes. Russ J Appl Chem 95, 76–83 (2022). https://doi.org/10.1134/S1070427222010104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222010104

Keywords:

Navigation