Skip to main content
Log in

Thermal properties of isotropic pitch fibers characterized by thermomechanical analysis

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal behavior of single filament of pitch fibers has been investigated using thermomechanical analysis (TMA). Thermal characteristic parameters such as glass transition temperature (T g) and linear coefficients of thermal expansion (CLTE) below and above T g were determined with high reproducibility to probe the conditions of pitch fiber materials. Different loads and heating rates were applied to examine their effects on measurement results. A load-free CLTE below T g can be extracted from the intercept of CLTE–stress curve, showing a constant value of 63.3 μm/(m °C) for the pitch fibers spun from different spinning speeds. On the other hand, the free CLTE above T g showed a remarkable trend decreased from positive to negative for pitch fibers produced with accelerated spinning speed. The isotropic pitch fibers can be partially oriented to fiber axis under strong elongation, and the limited degree of orientation is confirmed by X-ray diffraction. Thus, the free CLTE above T g can serve as an excellent indication of degree of preferred orientation for pitch fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fu X, Lu W, Chung DDL (1998) Ozone treatment of carbon fiber for reinforcing cement. Carbon 36:1337–1345. doi:10.1016/S0008-6223(98)00115-8

    Article  Google Scholar 

  2. Egashira M, Takatsuji H, Okada S, Yamaki J (2002) Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries. J Power Sources 107:56–60. doi:10.1016/S0378-7753(01)00980-6

    Article  Google Scholar 

  3. Jin H, Park S-E, Lee JM, Ryu SK (1996) The shape-selectivity of activated carbon fibers as a palladium catalyst support. Carbon 34:429–431. doi:10.1016/0008-6223(96)87613-5

    Article  Google Scholar 

  4. Lozano-Castelló D, Alcañiz-Monge J, de la Casa-Lillo MA et al (2002) Advances in the study of methane storage in porous carbonaceous materials. Fuel 81:1777–1803. doi:10.1016/S0016-2361(02)00124-2

    Article  Google Scholar 

  5. Navarri P, Marchal D, Ginestet A (2001) Activated carbon fibre materials for VOC removal. Filtr Sep 38:33–40. doi:10.1016/S0015-1882(01)80150-6

    Article  Google Scholar 

  6. Khandare PM, Zondlo JW, Pavlovic AS (1996) The measurement of the glass transition temperature of mesophase pitches using a thermomechanical device. Carbon 34:663–669. doi:10.1016/0008-6223(95)00202-2

    Article  Google Scholar 

  7. Berrueco C, Álvarez P, Díez N et al (2012) Characterisation and feasibility as carbon fibre precursors of isotropic pitches derived from anthracene oil. Fuel 101:9–15. doi:10.1016/j.fuel.2011.10.005

    Article  Google Scholar 

  8. Yoon S-H, Korai Y, Mochida I (1994) Assessment and optimization of the stabilization process of mesophase pitch fibers by thermal analyses. Carbon 32:281–287

    Article  Google Scholar 

  9. Prauchner MJ, Pasa VMD, Otani C, Otani S (2004) The use of DSC to assess the stabilization of thermoplastic eucalyptus tar pitch fibers. J Therm Anal Calorim 76:935–940. doi:10.1023/B:JTAN.0000032278.06131.69

    Article  Google Scholar 

  10. Ogale AA, Lin C, Anderson DP, Kearns KM (2002) Orientation and dimensional changes in mesophase pitch-based carbon fibers. Carbon 40:1309–1319. doi:10.1016/S0008-6223(01)00300-1

    Article  Google Scholar 

  11. Hamada T, Furuyama M, Tomioka T, Endo M (1992) Preferred orientation of pitch precursor fibers and carbon fibers prepared from isotropic pitch. J Mater Res 7:1178–1188. doi:10.1557/JMR.1992.1178

    Article  Google Scholar 

  12. Senbiao H, Zhongmin G, Xiaoye M et al (2012) Properties, morphology and structure of BPDA/PPD/TFMB polyimide fibers. Chem Res Chin Univ, p 752–756

  13. Riesen R, Schawe JEK (2000) Expansion and shrinkage of fibers: load- and temperature modulated TMA measurements temperature calibration of fiber attachments. J Therm Anal Calorim 59:337–350. doi:10.1023/A:1010116803480

    Article  Google Scholar 

  14. Yang L, Thomason JL (2013) The thermal behaviour of glass fibre investigated by thermomechanical analysis. J Mater Sci 48:5768–5775. doi:10.1007/s10853-013-7369-7

    Article  Google Scholar 

  15. Yang H, Yoon S-H, Korai Y et al (2003) Improving graphitization degree of mesophase pitch-derived carbon fiber by solid-phase annealing of spun fiber. Carbon 41:397–403. doi:10.1016/S0008-6223(02)00320-2

    Article  Google Scholar 

  16. Stephen C (2002) Handbook of thermal analysis and calorimetry, 1st edn. Elsevier

  17. Boyer RF (1970) Thermal analysis. In: Wiedermann HG (ed) 3rd ICTA. Birkhauser Verlag. Basel and Stuttgart

  18. Dyre JC (2006) Colloquium: the glass transition and elastic models of glass-forming liquids. Rev Mod Phys 78:953–972. doi:10.1103/RevModPhys.78.953

    Article  Google Scholar 

  19. Barnes AB, Dauché FM, Gallego NC et al (1998) As-spun orientation as an indication of graphitized properties of mesophase-based carbon fiber. Carbon 36:855–860. doi:10.1016/S0008-6223(97)00166-8

    Article  Google Scholar 

  20. Chand S (2000) Review carbon fibers for composites. J Mater Sci 35:1303–1313. doi:10.1023/A:1004780301489

    Article  Google Scholar 

  21. Gallego NC, Edie DD (2001) Structure–property relationships for high thermal conductivity carbon fibers. Composites Part A 32:1031–1038. doi:10.1016/S1359-835X(00)00175-5

    Article  Google Scholar 

  22. Hamada T, Furuyama M, Sajiki Y et al (1990) Preferred orientation of pitch precursor fibers. J Mater Res 5:1271–1280. doi:10.1557/JMR.1990.1271

    Article  Google Scholar 

  23. Lu S, Blanco C, Rand B (2002) Large diameter carbon fibres from mesophase pitch. Carbon 40:2109–2116. doi:10.1016/S0008-6223(02)00060-X

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51402102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Ouyang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Ouyang, T. & Fei, Y. Thermal properties of isotropic pitch fibers characterized by thermomechanical analysis. J Mater Sci 51, 3408–3414 (2016). https://doi.org/10.1007/s10853-015-9657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9657-x

Keywords

Navigation