Skip to main content
Log in

The origin of the effect of aging on the thermoelectric power of maraging C250 steel

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The sensitivity of thermoelectric power (TEP) to the aging condition of maraging C250 steel was investigated. TEP revealed a high sensitivity to the aging process as its value decreased by ~17 μV/K following 3 h of aging at 510 °C. This is a noticeably large change for metallic systems undergoing metallurgical modifications. Using model alloys, we show that the significant change in TEP is mainly due to the depletion of the matrix from the precipitating elements which change the electron density in the Fermi level, as was confirmed by X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Provided that the electron scattering is elastic, the density of electronic states is reasonably smooth, and phonon drag is negligible.

References

  1. Decker RF, Eash JT, Goldman AJ (1962) 18% Ni maraging steel. Trans Quarterly ASM 55(1):58–76

    Google Scholar 

  2. Vasudevan VK, Kim SG, Wayman CM (1990) Precipitation reactions and strengthening behavior in 18 wt pct nickel maraging steels. Metall Trans A 21(10):2655–2668

    Article  Google Scholar 

  3. Floreen S (1968) The physical metallurgy of maraging steels. Metall Rev 13(1):115–128

    Google Scholar 

  4. Sha W, Cerezo A, Smith GDW (1993) Phase chemistry and precipitation reactions in maragind steels. 1. Introduction and study of Co-containing C-300 steel. Metall Trans 24A:1221–1232

    Article  Google Scholar 

  5. Sha W, Cerezo A, Smith GDW (1993) Phase chemistry and precipitation reactions in maragind steels.2. Co-free T-300 steel. Metall Trans 24A:1233–1239

    Article  Google Scholar 

  6. Tewari R, Mazumder S, Barta IS, Rey GK, Banerjee S (2000) Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater 48:1187–1200

    Article  Google Scholar 

  7. Rao MN (2006) Progress in understanding the metallurgy of 18 % Ni ckel maraging steel. Int J Mater Res (formerly Z. Metallkd) 97(11):1594–1607

    Article  Google Scholar 

  8. Viswanathan UK, Dey GK, Asundi MK (1993) Precipitation hardening in 350-grade maraging steel. Metall Trans 24A(11):2429–2442

    Article  Google Scholar 

  9. Moshka O, Pinkas M, Brosh E, Ezersky V, Meshi L (2015) Addressing the issue of precipitates in maraging steels—unambiguous answer. Mater Sci Eng, A 638:232–239

    Article  Google Scholar 

  10. Mahadevan S, Jayakumar T, Rao BPC, Kumar A, Rajkumar KV, Raj B (2008) X-ray diffraction profile analysis for characterizing isothermal aging behavior of M250 grade maraging steel. Metall Mater Trans A 39A(8):1978–1984

    Article  Google Scholar 

  11. Rajkumar KV, Kumar A, Jayakumar T, Raj B (2007) Characterization of aging behavior in M250 grade maraging steel using ultrasonic measurements. Met. Mat. Trans. A 38A(2):236–243

    Article  Google Scholar 

  12. Rajkumar KV, Rao BPC, Sasi B, Kumar A, Jayakumar T, Raj B (2007) Characterization of aging behaviour in M250 grade maraging steel using eddy current non-destructive methodology. Mater Sci Eng, A 464(1–2):233–240

    Article  Google Scholar 

  13. Rajkumar KV, Vaidyanathan S, Kumar A, Jayakumar T, Raj B, Ray KK (2007) Characterization of aging-induced microstructural changes in M250 maraging steel using magnetic parameters. J Magn Magn Mater 312(2):359–365

    Article  Google Scholar 

  14. Barnard RD (1972) Thermoelectricity in metals and alloys. Taylor & Francis Ltd., London

    Google Scholar 

  15. Raynaud GM, Guyot P (1988) Coherent precipitation effect on thermo-power of Al-Cu alloys. Acta Metall 36(1):143–147

    Article  Google Scholar 

  16. Tkalcec I, Azcoitia C, Crevoiserat S, Mari D (2004) Tempering effects on a martensitic high carbon steel. Mater Sci Eng A 387:352–356

    Article  Google Scholar 

  17. Pelletier JM, Vigier G, Merlin J, Merle P, Fouqoet F, Borrelly R (1984) Precipitation effect on thermopower in Al-Cu alloys. Acta Mater 32(7):1069–1078

    Article  Google Scholar 

  18. Ferrer JP, De Cock T, Capdevila C, Caballero FG, de Andrés CG (2007) Comparison of the annealing behaviour between cold and warm rolled. Acta Mater 55(6):2075–2083

    Article  Google Scholar 

  19. Soto-Parra DE, Flores-Zúñiga H, Cuéllar EL, Ochoa-Gamboa RA, Ríos-Jara D (2014) Recrystallization of a Ti-45Ni-5Cu cold-worked shape memory alloy characterized by thermoelectric power and electrical properties. Mater Res 14(4):1023–1030

    Article  Google Scholar 

  20. Kawaguchi Y, Yamanaka S (2002) Mechanism of the change in thermoelectric power of cast duplex stainless. J Alloy Compd 336:301–314

    Article  Google Scholar 

  21. Pinkas M, Foxman Z, Froumin N, Hähner P, Meshi L (2015) Sensitivity of thermo-electric power measurements to α-α’ phase separation in Cr-rich oxide dispersion strengthened steel. J Mater Sci 50:4629–4635. doi:10.1007/s10853-015-9014-0

    Article  Google Scholar 

  22. Danon A, Alamo A (2002) Behavior of Eurofer97 reduced activation martensitic steel upon heating and continuous cooling. J Nucl Mater 307:479–483

    Article  Google Scholar 

  23. Niffenegger M, Leber HJ (2009) Monitoring the embrittlement of reactor pressure vessel steels. J Nucl Mater 389:62–67

    Article  Google Scholar 

  24. Houze M, Kleber X, Fouquet F, Delnondedieu M (2004) Study of molybdenum precipitation in steels using thermoelectric power measurement. Scr Mater 51:1171–1176

    Article  Google Scholar 

  25. Caballero FG, Capdevila C, Alvarez LF, de Andres CG (2004) Thermoelectric power studies on a martensitic stainless steel. Scr Mater 50:1061–1066

    Article  Google Scholar 

  26. Mott NF, Jones H (1958) The theory and properties of metals and alloys. Dover, New York

    Google Scholar 

  27. Lavaire N, Massardier V, Merlin J (2004) Quantitative evaluation of the interstitial content (C and/or N) in solid solution in extra-mild steels by thermoelectric power measurements. Scr Mater 50:131–135

    Article  Google Scholar 

  28. Merlin J, Merle P, Garnier S, Bouzekri M (2004) Experimental determination of the carbon solubility limit in ferritic steels. Metall Mater Trans A 35A:1655–1661

    Article  Google Scholar 

  29. Rana R, Singh SB, Mohanty ON (2006) Thermoelectric power studies of copper precipitation in a new interstitial-free steel. Scr Mater 55(12):1107–1110

    Article  Google Scholar 

  30. Pelletier JM, Borrelly R (1982) Temperature and concentration dependences of thermoelectric power at high temperatures in some aluminium alloys. Mater Sci Eng 55:191–202

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the joint IAEC-UPBC Pazy foundation, Grant No. 151. The authors express their gratitude to Mr. S. Levi, Mr. Y. Alon, Mr. M. Amos, Mr. O. Omasi, and Mr. Z. Foxman for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pinkas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinkas, M., Moshka, O., Okavi, S. et al. The origin of the effect of aging on the thermoelectric power of maraging C250 steel. J Mater Sci 50, 7698–7704 (2015). https://doi.org/10.1007/s10853-015-9336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9336-y

Keywords

Navigation