Skip to main content
Log in

Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Organic electronics have, over the past two decades, developed into an exciting area of research and technology to replace classic inorganic semiconductors. Organic photovoltaics, light-emitting diodes, and thin-film transistors are already well developed and are currently being commercialized for a variety of applications. More recently, organic transistors have found new applications in the field of biosensors. The progress made in this direction is the topic of this review. Various configurations are presented, with their detection principle, and illustrated by examples from the literature.

Electrolyte-Gated OFET (EGOFET) architecture. EGOFETs differ from OFETs, as in OECTs, in that the gate is separated from the semiconductor by an electrolyte. This allows low voltage operation compared with OFETs gated via solid dielectrics. The red circle indicates the interface involved in the detection of biomolecules, when water is used as electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. IUPAC Compendium of Chemical Terminology, 2nd ed (the Gold Book) Compiled by McNaught, AD and Wilkinson, A Blackwell Scientific Publications, Oxford (1997). XML on line corrected - version: http://goldbookiupacorg (2006-) created by M Nic, J Jirat, B Kosata; updates compiled by A Jenkins ISBN 0-9678550-9-8

  2. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45 (Automated and Semi-Automated Systems in Clinical Chemistry)

    Article  CAS  Google Scholar 

  3. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986):911–918

    Article  CAS  Google Scholar 

  4. Berggren M, Nilsson D, Robinson ND (2007) Organic materials for printed electronics. Nat Mater 6(1):3–5

    Article  CAS  Google Scholar 

  5. Vaeth KM (2003) OLED-display technology. Inf Disp 19(6):12–17

    Google Scholar 

  6. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924

    Article  CAS  Google Scholar 

  7. Bartic C, Borghs G (2006) Organic thin-film transistors as transducers for (bio) analytical applications. Anal Bioanal Chem 384(2):354–365

    Article  CAS  Google Scholar 

  8. Mabeck J, Malliaras GG (2006) Chemical and biological sensors based on organic thin-film transistors. Anal Bioanal Chem 384(2):343–353

    Article  CAS  Google Scholar 

  9. Wang L, Fine D, Sharma D, Torsi L, Dodabalapur A (2006) Nanoscale organic and polymeric field-effect transistors as chemical sensors. Anal Bioanal Chem 384(2):310–321

    Article  CAS  Google Scholar 

  10. Locklin J, Bao Z (2006) Effect of morphology on organic thin film transistor sensors. Anal Bioanal Chem 384(2):336–342

    Article  CAS  Google Scholar 

  11. Dzyadevych S, Soldatkin A, Korpan Y, Arkhypova V, El'skaya A, Chovelon JM, Martelet C, Jaffrezic-Renault N (2003) Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Anal Bioanal Chem 377(3):496–506

    Article  CAS  Google Scholar 

  12. Yuqing M, Jianguo G, Jianrong C (2003) Ion sensitive field effect transducer-based biosensors. Biotechnol Adv 21(6):527–534

    Article  Google Scholar 

  13. Poghossian A, Cherstvy A, Ingebrandt S, Offenhäusser A, Schöning MJ (2005) Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors Actuator B Chem 111–112:470–480

    Article  Google Scholar 

  14. White HS, Kittlesen GP, Wrighton MS (1984) Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J Am Chem Soc 106(18):5375–5377

    Article  CAS  Google Scholar 

  15. Paul EW, Ricco AJ, Wrighton MS (1985) Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J Phys Chem 89(8):1441–1447

    Article  CAS  Google Scholar 

  16. Chao S, Wrighton MS (1987) Characterization of a solid-state polyaniline-based transistor: water vapor dependent characteristics of a device employing a poly(vinyl alcohol)/phosphoric acid solid-state electrolyte. J Am Chem Soc 109(22):6627–6631

    Article  CAS  Google Scholar 

  17. Thackeray JW, White HS, Wrighton MS (1985) Poly(3-methylthiophene)-coated electrodes: optical and electrical properties as a function of redox potential and amplification of electrical and chemical signals using poly(3-methylthiophene)-based microelectrochemical transistors. J Phys Chem 89(23):5133–5140

    Article  CAS  Google Scholar 

  18. Thackeray JW, Wrighton MS (1986) Chemically responsive microelectrochemical devices based on platinized poly(3-methylthiophene): variation in conductivity with variation in hydrogen, oxygen, or pH in aqueous solution. J Phys Chem 90(25):6674–6679

    Article  CAS  Google Scholar 

  19. Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15(21):2077–2088

    Article  CAS  Google Scholar 

  20. Bartlett PN, Astier Y (2000) Microelectrochemical enzyme transistors. Chem Commun 2:105–112

    Article  Google Scholar 

  21. Matsue T, Nishizawa M, Sawaguchi T, Uchida I (1991) An enzyme switch sensitive to NADH. J Chem Soc Chem Commun 15:1029–1031

    Article  Google Scholar 

  22. Nishizawa M, Matsue T, Uchida I (1992) Penicillin sensor based on a microarray electrode coated with pH-responsive polypyrrole. Anal Chem 64(21):2642–2644

    Article  CAS  Google Scholar 

  23. Hoa DT, Kumar TNS, Punekar NS, Srinivasa RS, Lal R, Contractor AQ (1992) A biosensor based on conducting polymers. Anal Chem 64(21):2645–2646

    Article  CAS  Google Scholar 

  24. Bartlett PN, Birkin PR (1993) Enzyme switch responsive to glucose. Anal Chem 65(8):1118–1119

    Article  CAS  Google Scholar 

  25. Bartlett PN, Wang JH, James W (1998) Measurement of low glucose concentrations using a microelectrochemical enzyme transistor. Analyst 123(2):387–392

    Article  CAS  Google Scholar 

  26. Bartlett PN, Wang JH (1996) Electroactivity, stability and application in an enzyme switch at pH 7 of poly(aniline)-poly(styrenesulfonate) composite films. J Chem Soc Faraday Trans 92(20):4137–4143

    Article  CAS  Google Scholar 

  27. Bartlett PN, Wang JH, Wallace ENK (1996) A microelectrochemical switch responsive to NADH. Chem Commun 3:359–360

    Article  Google Scholar 

  28. Astier Y, Bartlett PN (2004) The measurement of alkaline phosphatase at nanomolar concentration within 70 s using a disposable microelectrochemical transistor. Bioelectrochemistry 64(1):53–59

    Article  CAS  Google Scholar 

  29. Raffa D, Leung KT, Battaglini F (2003) A microelectrochemical enzyme transistor based on an N-Alkylated poly(Aniline) and its application to determine hydrogen peroxide at neutral pH. Anal Chem 75(19):4983–4987

    Article  CAS  Google Scholar 

  30. Krishnamoorthy K, Gokhale RS, Contractor AQ, Kumar A (2004) Novel label-free DNA sensors based on poly(3,4-ethylenedioxythiophene). Chem Commun 7:820–821

    Article  Google Scholar 

  31. Nikolou M, Malliaras GG (2008) Applications of PEDOT:PSS transistors in chemical and biological sensors. Chem Rec 8:13

    Article  CAS  Google Scholar 

  32. Berggren M, Forchheimer R, Bobacka J, Svensson PO, Nilsson D, Larsson O and Ivaska A (2008) PEDOT:PSS-Based Electrochemical Transistors for Ion-to-Electron Transduction and Sensor Signal Amplification. Organic Semiconductors in Sensor Applications, Bernards, DA Malliaras, GG and Owens, RM Springer Berlin Heidelberg 107:263–280

  33. Bernards DA, Malliaras GG, Toombes GES, Gruner SM (2006) Gating of an organic transistor through a bilayer lipid membrane with ion channels. Appl Phys Lett 89(5):053505.1–053505.3

    Article  Google Scholar 

  34. Zhu ZT, Mabeck JT, Zhu C, Cady NC, Batt CA, Malliaras GG (2004) A simple poly(3,4-ethylene dioxythiophene)/poly(styrene Sulfonic Acid) transistor for glucose sensing at neutral pH. Chem Commun 13:1556–1557

    Article  Google Scholar 

  35. Macaya DJ, Nikolou M, Takamatsu S, Mabeck JT, Owens RM, Malliaras GG (2007) Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors. Sensors Actuator B Chem 123(1):374–378

    Article  Google Scholar 

  36. Bernards DA, Macaya DJ, Nikolou M, DeFranco JA, Takamatsu S, Malliaras GG (2008) Enzymatic sensing with organic electrochemical transistors. J Mater Chem 18(1):116–120

    Article  CAS  Google Scholar 

  37. Liu J, Agarwal M, Varahramyan K (2008) Glucose sensor based on organic thin-film transistor using glucose oxidase and conducting polymer. Sensors Actuator B Chem 135(1):195–199

    Article  Google Scholar 

  38. Yang SY, DeFranco JA, Sylvester YA, Gobert TJ, Macaya DJ, Owens RM, Malliaras GG (2009) Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab Chip 9(5):704–708

    Article  CAS  Google Scholar 

  39. Shim NY, Bernards DA, Macaya DJ, DeFranco JA, Nikolou M, Owens RM, Malliaras GG (2009) All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. Sensors 9(12):9896–9902

    Article  CAS  Google Scholar 

  40. Kim DJ, Lee NE, Park JS, Park IJ, Kim JG, Cho HJ (2010) Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens Bioelectron 25(11):2477–2482

    Article  CAS  Google Scholar 

  41. Lin P, Yan F, Yu J, Chan HLW, Yang M (2010) The application of organic electrochemical transistors in cell-based biosensors. Adv Mater 22(33):3655–3660

    Article  CAS  Google Scholar 

  42. Badhwar S and Narayan KS (2008) Journal of Sensors Article ID 702161

  43. Cicoira F, Sessolo M, Yaghmazadeh O, DeFranco JA, Yang SY, Malliaras GG (2010) Influence of device geometry on sensor characteristics of planar organic electrochemical transistors. Adv Mater 22(9):1012–1016

    CAS  Google Scholar 

  44. Yaghmazadeh O, Cicoira F, Bernards DA, Yang SY, Bonnassieux Y, Malliaras GG (2011) Optimization of organic electrochemical transistors for sensor applications. J Polym Scie Part B Polym Phys 49(1):34–39

    Article  CAS  Google Scholar 

  45. Lin P, Yan F, Chan HLW (2010) Ion-sensitive properties of organic electrochemical transistors. ACS Appl Mater Interfaces 2(6):1637–1641

    Article  CAS  Google Scholar 

  46. Tarabella G, Santato C, Yang SY, Iannotta S, Malliaras GG, Cicoira F (2010) Effect of the gate electrode on the response of organic electrochemical transistors. Appl Phys Lett 97(12):123304.1–123304.3

    Article  Google Scholar 

  47. Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49(18):1210–1212

    Article  CAS  Google Scholar 

  48. Facchetti A (2007) Semiconductors for organic transistors. Mater Today 10(3):28–37

    Article  CAS  Google Scholar 

  49. Facchetti A, Yoon MH (2005) Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv Mater 17(14):1705–1725

    Article  CAS  Google Scholar 

  50. Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14(2):99–117

    Article  CAS  Google Scholar 

  51. Braga D, Horowitz G (2009) High-performance organic field-effect transistors. Adv Mater 21(14–15):1473–1486

    Article  CAS  Google Scholar 

  52. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng BME 17(1):70–71

    Article  CAS  Google Scholar 

  53. Bartic C, Palan B, Campitelli A, Borghs G (2002) Monitoring pH with organic-based field-effect transistors. Sensors Actuator B Chem 83(1–3):115–122

    Article  Google Scholar 

  54. Bartic C, Campitelli A, Borghs S (2003) Field-effect detection of chemical species with hybrid organic/inorganic transistors. Appl Phys Lett 82(3):475–477

    Article  CAS  Google Scholar 

  55. Loi A, Manunza I, Bonfiglio A (2005) Flexible, organic, ion-sensitive field-effect transistor. Appl Phys Lett 86(10):103512–103513

    Article  Google Scholar 

  56. Diallo K, Lemiti M, Tardy J, Bessueille F, Jaffrezic-Renault N (2008) Flexible pentacene ion sensitive field-effect transistor with a hydrogenated silicon nitride surface treated parylene top gate insulator. Appl Phys Lett 93(18):183305.1–183305.3

    Article  Google Scholar 

  57. Diallo A, Tardy J, Zhang ZQ, Bessueille F, Jaffrezic-Renault N, Lemiti M (2009) Trimethylamine biosensor based on pentacene enzymatic organic field-effect transistor. Appl Phys Lett 94(26):263302–263303

    Article  Google Scholar 

  58. Rai P, Jung S, Ji T, Varadan VK (2009) Drain current centric modality: instrumentation and evaluation of ISFET for monitoring myocardial ischemia like variations in pH and potassium ion concentration. Sensors J IEEE 9(12):1987–1995. doi:101109/JSEN20092032525

    Article  Google Scholar 

  59. Zhang Q, Subramanian V (2007) DNA hybridization detection with organic thin-film transistors: toward fast and disposable DNA microarray chips. Biosens Bioelectron 22(12):3182–3187

    Article  CAS  Google Scholar 

  60. Jagannathan L, Subramanian V (2009) DNA detection using organic thin film transistors: optimization of DNA immobilization and sensor sensitivity. Biosens Bioelectron 25(2):288–293

    Article  CAS  Google Scholar 

  61. Stoliar P, Bystrenova E, Quiroga SD, Annibale P, Facchini M, Spijkman M, Setayesh S, de Leeuw D, Biscarini F (2009) DNA adsorption measured with ultra-thin film organic field-effect transistors. Biosens Bioelectron 24(9):2935–2938

    Article  CAS  Google Scholar 

  62. Qiu Y, Hu Y, Dong G, Wang L, Xie J, Ma Y (2003) H2O effect on the stability of organic thin-film field-effect transistors. Appl Phys Lett 83(8):1644–1646

    Article  CAS  Google Scholar 

  63. Yan F, Mok SM, Yu J, Chan HLW, Yang M (2009) Label-free DNA sensor based on organic thin-film transistors. Biosens Bioelectron 24(5):1241–1245

    Article  CAS  Google Scholar 

  64. Maddalena F, Kuiper MJ, Poolman B, Brouwer F, Hummelen JC, de Leeuw DM, De Boer B, Blom PWM (2010) Organic field-effect transistor-based biosensors functionalized with protein receptors. J Appl Phys 108(12):124501–124504

    Article  Google Scholar 

  65. Someya T, Dodabalapur A, Gelperin A, Katz HE, Bao Z (2002) Integration and response of organic electronics with aqueous microfluidics. Langmuir 18(13):5299–5302

    Article  CAS  Google Scholar 

  66. Roberts ME, Mannsfeld SCB, Queraltó N, Reese C, Locklin J, Knoll W and Bao Z (2008) Water-stable organic transistors and their application in chemical and biological sensors. Proceedings of the National Academy of Sciences 105(34):12134–12139

    Google Scholar 

  67. Khan HU, Roberts ME, Johnson O, Förch R, Knoll W and Bao Z (2010) In Situ, Label-Free DNA Detection Using Organic Transistor Sensors. Adv Mater 4452–4456

  68. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037):1497–1500

    Article  CAS  Google Scholar 

  69. Lim SC, Yang YS, Kim SH, Kim ZS, Youn DH, Zyung T, Kwon JY, Hwang DH, Kim DJ (2009) Fabrication and characterization of an OTFT-based biosensor using a biotinylated F8T2 polymer. ETRI J 31:647–652

    Article  Google Scholar 

  70. Kergoat L, Herlogsson L, Braga D, Piro B, Pham MC, Crispin X, Berggren M, Horowitz G (2010) A water-gate organic field-effect transistor. Adv Mater 22(23):2565–2569

    Article  CAS  Google Scholar 

  71. Panzer MJ, Newman CR, Frisbie CD (2005) Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl Phys Lett 86(10):103503–103503

    Article  Google Scholar 

  72. Panzer MJ, Frisbie CD (2005) Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J Am Chem Soc 127(19):6960–6961

    Article  CAS  Google Scholar 

  73. Shimotani H, Asanuma H, Takeya J, Iwasa Y (2006) Electrolyte-gated charge accumulation in organic single crystals. Appl Phys Lett 89(20):203501–203503

    Article  Google Scholar 

  74. Ono S, Miwa K, Seki S, Takeya J (2009) A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes. Appl Phys Lett 94(6):063301–063303

    Article  Google Scholar 

  75. Xia Y, Cho JH, Lee J, Ruden PP, Frisbie CD (2009) Comparison of the mobility-carrier density relation in polymer and single-crystal organic transistors employing vacuum and liquid gate dielectrics. Adv Mater 21(21):2174–2179

    Article  CAS  Google Scholar 

  76. Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganäs O (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 5:573–577

    Article  Google Scholar 

  77. Lee J, Panzer MJ, He Y, Lodge TP, Frisbie CD (2007) Ion-gel gated polymer thin-film transistors. J Am Chem Soc 129(15):4532–4533

    Article  CAS  Google Scholar 

  78. Cho J, Lee J, He Y, Kim B, Lodge T, Frisbie CD (2008) High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv Mater 20(4):686–690

    Article  CAS  Google Scholar 

  79. Facchetti A (2008) Dielectric materials: gels excel. Nat Mater 7(11):839–840

    Article  CAS  Google Scholar 

  80. Said E, Crispin X, Herlogsson L, Elhag S, Robinson ND, Berggren M (2006) Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film. Appl Phys Lett 89(14):143507.1–143507.3

    Article  Google Scholar 

  81. Herlogsson L, Crispin X, Robinson ND, Sandberg M, Hagel OJ, Gustafsson G, Berggren M (2007) Low-voltage polymer field-effect transistors gated via a proton conductor. Adv Mater 19(1):97–101

    Article  CAS  Google Scholar 

  82. Said E, Larsson O, Berggren M, Crispin X (2008) Effects of the ionic currents in electrolyte-gated organic field-effect transistors. Adv Func Mater 18(21):3529–3536

    Article  CAS  Google Scholar 

  83. Yuen JD, Dhoot AS, Namdas EB, Coates NE, Heeney M, McCulloch I, Moses D, Heeger AJ (2007) Electrochemical doping in electrolyte-gated polymer transistors. J Am Chem Soc 129(46):14367–14371

    Article  CAS  Google Scholar 

  84. Kergoat L, Battaglini N, Miozzo L, Piro B, Pham MC, Yassar A, Horowitz G (2011) Org Electron. doi:10.1016/j.orgel.2011.04.006, In Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh-Chau Pham.

Additional information

Published in the special issue Surface Architectures for Analytical Purposes with guest editors Luigia Sabbatini and Luisa Torsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kergoat, L., Piro, B., Berggren, M. et al. Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal Bioanal Chem 402, 1813–1826 (2012). https://doi.org/10.1007/s00216-011-5363-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5363-y

Keywords

Navigation