Skip to main content
Log in

Electrical transport properties of polyvinyl alcohol–selenium nanocomposite films at and above room temperature

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Here, we report the DC and AC electrical properties of polyvinyl alcohol (PVA)–selenium (Se) nanocomposite films in the temperature (T) range 298 K ≤ T ≤ 420 K and in the frequency (f) range 120 Hz ≤ f ≤ 1 MHz. The introduction of selenium nanoparticles into the PVA matrix slightly increases the values of DC conductivity whose temperature dependency obeys Vogel–Fulcher–Tammann law. The AC conductivity follows a power law with frequency in which the temperature dependence of the frequency exponent suggests that the correlated barrier hopping is the dominant charge transport mechanism for the nanocomposite films. Comparative discussions with Dyre’s random free-energy barrier model have also been made in this regard. The increase in AC conductivity with increase in nanoparticles concentration was also observed and attributed to the corresponding increase in conducting channels in the PVA matrix. The real part of the dielectric constant increases either with increase in temperature or with increase in selenium nanoparticles loading into the polymer matrix, which may be attributed to the enhancement of interfacial polarization. The frequency dispersion of the dielectric spectra has been modeled according to the modified Cole–Cole equation. Well-defined peaks were appeared in the plotting of imaginary part of electric modulus with frequency above room temperature, which was fitted with suitable equations to account for the deviations from ideal Debye-type behavior. Though the current–voltage characteristics are linear at smaller voltages, it appreciably becomes nonlinear at higher voltages. This nonlinearity has been accounted in light of Werner’s model and back to back Schottky diode model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  Google Scholar 

  2. Haase MA, Qui J, DePuydt JM, Cheng H (1991) Blue-green laser diodes. Appl Phys Lett 59:1272–1274

    Article  Google Scholar 

  3. Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2013) Structural characterization and observation of variable range hopping conduction mechanism at high temperature in CdSe quantum dot solids. J Appl Phys 113:093703

    Article  Google Scholar 

  4. Schlamp MC, Peng XG, Alivisatos AP (1997) Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J Appl Phys 82:5837

    Article  Google Scholar 

  5. Sargent EH (2009) Infrared photovoltaics made by solution processing. Nat Photonics 3:325–331

    Article  Google Scholar 

  6. Genovese MP, Lightcap IV, Kamat PV (2012) Sun-believable solar paint. A transformative one-step approach for designing nanocrystalline solar cells. ACS Nano 6:865–872

    Article  Google Scholar 

  7. Berger LI (1997) Semiconductor materials. CRC Press, Boca Raton FL, p 198–203

    Google Scholar 

  8. Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2013) Semiconducting selenium nanoparticles: Structural, electrical characterization, and formation of a back-to-back Schottky diode device. J Appl Phys 113:123704

    Article  Google Scholar 

  9. Hasan A, El Sayed AM, Morsi WM, El-Sayed S (2012) Influence of Cr2O3 nanoparticles on the physical properties of polyvinyl alcohol. J Appl Phys 112:093525

    Article  Google Scholar 

  10. Bouzerara R, Achour S, Tabet N, Zerkout S (2011) Synthesis and characterization of ZnO/PVA composite nanofibres by electrospinning. Int J Nanopart 4:10–19

    Article  Google Scholar 

  11. Zhang FM, Chang J, Eberhard B (2010) Dissolution of poly(vinyl alcohol)-modified carbon nanotubes in a buffer solution. New Carbon Mater 25:241–247

    Article  Google Scholar 

  12. Hanafy TA (2012) Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films. J Appl Phys 112:034102

    Article  Google Scholar 

  13. Mondal SP, Aluguri R, Ray SK (2009) Dielectric and transport properties of carbon nanotube–CdS nanostructures embedded in polyvinyl alcohol matrix. J Appl Phys 105:114317

    Article  Google Scholar 

  14. Bhadra D, Sannigrahi J, Chaudhuri BK, Sakata H (2012) Enhancement of the transport and dielectric properties of graphite oxide nanoplatelets-polyvinyl alcohol composite showing low percolation threshold. Polym Compos 33:436–442

    Article  Google Scholar 

  15. Senthil V, Badapanda T, Chithambararaj A, Bose AC, Mohapatra AK, Panigrahi S (2012) Dielectric relaxation behavior and electrical conduction mechanism in polymer-ceramic composites based on Sr modified Barium Zirconium Titanate ceramic. J Polym Res 19:9898

    Article  Google Scholar 

  16. Senthil V, Badapanda T, Kumar SN, Kumar P, Panigrahi S (2012) Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy. J Polym Res 19:9838

    Article  Google Scholar 

  17. Fernandes DM, Hechenleitner AAW, Lima SM, Andrade LHC, Caires ARL, Pineda EAG (2011) Preparation, characterization, and photoluminescence study of PVA/ZnO nanocomposite films. Mater Chem Phys 128:371–376

    Article  Google Scholar 

  18. Chakraborty G, Gupta K, Meikap AK, Babu R, Blau WJ (2011) Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature. J Appl Phys 109:033707

    Article  Google Scholar 

  19. Gandhi S, Nagalakshmi N, Baskaran I, Dhanalakshmi V, Gopinathan Nair MR, Anbarasan R (2010) Synthesis and characterization of nano-sized NiO and its surface catalytic effect on poly(vinyl alcohol). J Appl Polym Sci 118:1666–1674

    Google Scholar 

  20. Mahmoud WE, Al-Ghamdi AA (2010) The influence of vanadium pentoxide on the structure and dielectric properties of poly(vinyl alcohol). Polym Int 59:1282–1288

    Article  Google Scholar 

  21. Abdelaziz M, Ghannam MM (2010) Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys B 405:958–964

    Article  Google Scholar 

  22. Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2014) Dielectric relaxation and ac conductivity behaviour of polyvinyl alcohol–HgSe quantum dot hybrid films. J Phys D Appl Phys 47:275301

    Article  Google Scholar 

  23. Mahendia S, Tomar AK, Kumar S (2010) Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J Alloys Compd 508:406–411

    Article  Google Scholar 

  24. Bhajantri RF, Ravindrachary V, Harisha A, Crasta V, Nayak SP, Poojary B (2006) Microstructural studies on BaCl2 doped poly(vinyl alcohol). Polymer 47:3591–3598

    Article  Google Scholar 

  25. Lunkenheimer P, Bobnar V, Pronin AV, Ritus AI, Volkov AA, Loidl A (2002) Origin of apparent colossal dielectric constants. Phys Rev B 66:052105

    Article  Google Scholar 

  26. El-kader FHA, Osman WH, Mahmoud KH, Basha MAF (2008) Dielectric investigations and ac conductivity of polyvinyl alcohol films doped with europium and terbium chloride. Phys B 403:3473–3484

    Article  Google Scholar 

  27. Yakuphanoglua F, Aydogdua Y, Schatzschneiderb U, Rentschlerb E (2003) Electrical conductivity, dielectric permittivity and thermal properties of the compound aqua [bis(2-dimethylaminomethyl-4-NIT-phenolato)] copper(II) including NaCl impurity. Phys B 334:443–450

    Article  Google Scholar 

  28. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:342

    Google Scholar 

  29. Tandon RP, Hotchandani S (2001) Electrical conductivity of semiconducting tungsten oxide glasses. Phys Status Solidi A 185:453–460

    Article  Google Scholar 

  30. Thongbai P, Tangwancharoen S, Yamwong T, Maensiri S (2008) Dielectric relaxation and dielectric response mechanism in (Li, Ti)-doped NiO ceramics. J Phys Condens Matter 20:395227

    Article  Google Scholar 

  31. Asami K (2002) Characterization of heterogeneous systems by dielectric spectroscopy. Prog Polym Sci 27:1617–1659

    Article  Google Scholar 

  32. Psarras GC, Manolakaki E, Tsangaris GM (2002) Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles. Compos A 33:375–384

    Article  Google Scholar 

  33. Ioannou G, Patsidis A, Psarras GC (2011) Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Compos A 42:104–110

    Article  Google Scholar 

  34. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London, p 316

    Google Scholar 

  35. Almond DP, Hunter CC, West AR (1984) The extraction of ionic conductivities and hopping rates from ac conductivity data. J Mater Sci 19:3236–3248

    Article  Google Scholar 

  36. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Article  Google Scholar 

  37. Long AR (1982) Frequency-dependent loss in amorphous semiconductors. Adv Phys 31:553–637

    Article  Google Scholar 

  38. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18:41–102

    Article  Google Scholar 

  39. Elliott SR (1987) Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–217

    Article  Google Scholar 

  40. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18:41–102

    Article  Google Scholar 

  41. Dyre JC (1988) The random free-energy barrier model for ac conduction in disordered solids. J Appl Phys 64:2456

    Article  Google Scholar 

  42. Psarras GC (2006) Hopping conductivity in polymer matrix–metal particles composites. Compos A 37:1545–1553

    Article  Google Scholar 

  43. McCrum NG, Read BE, Williams G (1967) An elastic and dielectric effects in polymeric solids. Wiley, New York, pp 180–182

    Google Scholar 

  44. Kim JS (2001) Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal. J Phys Soc Jpn 70:3129–3133

    Article  Google Scholar 

  45. Gonzalez-Campos JB et al (2012) Revisiting the thermal relaxations of poly(vinyl alcohol). J Appl Polym Sci 125:4082–4090

    Article  Google Scholar 

  46. González-Campos JB, Prokhorov E, Sanchez IC et al (2012) Molecular dynamics analysis of PVA-AgnP composites by dielectric spectroscopy. J Nanomater 2012:11. doi:10.1155/2012/925750

  47. Macedo PB, Moynihan CT, Bose R (1972) The long time aspects of this correlation function, which are obtainable by bridge techniques at temperatures approaching the glass transition. Phys Chem Glasses 13:171–176

    Google Scholar 

  48. Bergman R (2000) General susceptibility functions for relaxations in disordered systems. J Appl Phys 88:1356

    Article  Google Scholar 

  49. Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2014) Anomalous electrical transport properties of CdSe quantum dots at and below room temperature. Phys B 438:70–77

    Article  Google Scholar 

  50. Linares A, Nogales A, Rueda DR, Ezquerra TA (2007) Molecular dynamics in PVDF/PVA blends as revealed by dielectric loss spectroscopy. J Polym Sci Part B Polym Phys 45:1653–1661

    Article  Google Scholar 

  51. Upadhyay J, Kumar A (2014) Investigation of structural, thermal and dielectric properties of polypyrrole nanotubes tailoring with silver nanoparticles. Compos Sci Technol 97:55–62

    Article  Google Scholar 

  52. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, p 119

    Google Scholar 

  53. Aubry V, Meyer F (1994) Schottky diodes with high series resistance: limitations of forward I–V methods. J Appl Phys 76:7973–7984

    Article  Google Scholar 

  54. Werner JH (1988) Schottky barrier and pn-junction I/V plots—small signal evaluation. Appl Phys A 47:291–300

    Article  Google Scholar 

  55. Chiquito AJ et al (2012) Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices. J Phys Condens Matter 24:225

    Article  Google Scholar 

Download references

Acknowledgements

Jiten Ghosh would like to thank Director CSIR-CGCRI for giving the permission for collaborative work with the team. The authors are thankful to MHRD, Government of India for the support during the project. We also gratefully acknowledge the support received from Centre of Excellence, TEQIP –II during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhojyoti Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Chatterjee, S.K., Ghosh, J. et al. Electrical transport properties of polyvinyl alcohol–selenium nanocomposite films at and above room temperature. J Mater Sci 50, 1632–1645 (2015). https://doi.org/10.1007/s10853-014-8724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8724-z

Keywords

Navigation