Skip to main content
Log in

Broadband dielectric relaxation investigations of polyvinyl chloride-fGO nanocomposite films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The use of polymer nanocomposites in different electrical applications stimulated the study of the dielectric properties for PVC-fGO films at different temperatures. The high values of εʹ of the different nanocomposites, at low frequencies, are due to the space charge effect induced by electrode polarization. The values of maximum barrier height (WM) decrease by increasing the applied temperature whereas they are independent of the content of fGo in the different nanocomposites. The values of real dielectric modulus (Mʹ) decreased by increasing fGO content (except for 0.5 wt% of fGO nanofiller). A shift in the position Mʺ peak to higher frequencies by increasing the temperature was observed. The values of σAC increase by increasing the fGO content up to 0.3 wt% while decreasing at 0.5 and 1.0 wt% of fGO. Increasing the fGO content in the nanocomposites causes the values of DC activation energy (EDC) to increase up to 0.3 wt% of fGO then they decreased, due to the space charge effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Drakopoulos SX, Patsidis AC, Psarras GC (2021) Epoxy-based/BaTiO3 nanodielectrics: relaxation dynamics, charge transport and energy storage. Mater Res Bull 145:111537

    Google Scholar 

  2. Martinez-Rugerio G, Alegría Á, Daniloska V, Tomovska R, Paulis M, Colmenero J (2015) Dielectric relaxations of acrylic-polyurethane hybrid materials. Polymer 74:21–29

    CAS  Google Scholar 

  3. Taha TA, Mahmoud MH (2021) Synthesis and characterization of PVDF-Er2O3 polymer nanocomposites for energy storage applications. Mater Chem Phys 270:124827

    CAS  Google Scholar 

  4. Taha TA, Mahmoud MH, Hamdeh HH (2021) Development, thermal and dielectric investigations of PVDF-Y2O3 polymer nanocomposite films. J Polym Res 28(5):1–9

    Google Scholar 

  5. Abdel-Baset TA, Hekal EA, Azab AA, Anis B (2021) Broadband dielectric properties of polyvinyl-formaldehyde/MWCNTs foams. Phys B Condens Matter 604:412666

    CAS  Google Scholar 

  6. Wang L, Liu C, Shen S, Xu M, Liu X (2020) Low dielectric constant polymers for high speed communication network. Adv Ind Eng Polym Res 3(4):138–148

    Google Scholar 

  7. Wang Z, Cheng Y, Yang M, Huang J, Cao D, Chen S, Xie Q, Lou W, Wu H (2018) Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine. Compos B Eng 140:83–90

    CAS  Google Scholar 

  8. Sanida A, Stavropoulos SG, Speliotis T, Psarras GC (2017) Development, characterization, energy storage and interface dielectric properties in SrFe12O19/epoxy nanocomposites. Polymer 120:73–81

    CAS  Google Scholar 

  9. Taha TA, Hendawy N, El-Rabaie S, Esmat A, El-Mansy MK (2020) Fluorescence and dielectric spectroscopy identification of polyvinyl chloride/NiO nanocomposites. J Mol Struct 1212:128162

    CAS  Google Scholar 

  10. Mazhar S, Qarni AA, Haq YU, Haq ZU, Murtaza I (2020) Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram Int 46(8):12593–12605

    CAS  Google Scholar 

  11. Mathews JM, Santhosh B, Abdul Azeez PM, Solaiappan A (2018) Design and fabrication of flexible poly (vinyl chloride) dielectric composite reinforced with ZnO microvaristors. J Appl Polym Sci 135(12):46031

    Google Scholar 

  12. Helal AI, Vshivkov SA, Zaki MF, Elkalashy SI, Soliman TS (2021) Effect of carbon nano tube in the structural and physical properties of polyvinyl chloride films. Phys Scr 96(8):085804

    Google Scholar 

  13. Yoo BM, Shin HJ, Yoon HW, Park HB (2014) Graphene and graphene oxide and their uses in barrier polymers. J Appl Polym Sci 131(1)

  14. Francis E, Ko HU, Kim JW, Kim HC, Kalarikkal N, Varughese K, Kim J, Thomas S (2018) High-k dielectric percolative nanocomposites based on multiwalled carbon nanotubes and polyvinyl chloride. J Mater Chem C 6(30):8152–8159

    CAS  Google Scholar 

  15. Francis E, Kim JW, Anu AS, Varughese KT, Kim J, Thomas S (2019) Morphology correlated investigation on mechanical and dielectric properties of plasticized poly vinyl chloride/MWCNT nanocomposites. Funct Compos Struct 1(3):035004

    CAS  Google Scholar 

  16. Ahmed RM, Ibrahiem AA, El-Bayoumi AS, Atta MM (2021) Structural, mechanical, and dielectric properties of polyvinylchloride/graphene nano platelets composites. Int J Polym Anal Charact 26(1):68–83

    CAS  Google Scholar 

  17. Akhina H, Arif PM, Nair MG, Nandakumar K, Thomas S (2019) Development of plasticized poly (vinyl chloride)/reduced graphene oxide nanocomposites for energy storage applications. Polym Test 73:250–257

    CAS  Google Scholar 

  18. Karteri I, Altun M, Gunes M (2017) Electromagnetic interference shielding performance and electromagnetic properties of wood-plastic nanocomposite with graphene nanoplatelets. J Mater Sci Mater Electron 28(9):6704–6711

    CAS  Google Scholar 

  19. Yadav M, Ahmad S, Chiu FC (2018) Graphene oxide dispersed polyvinyl chloride/alkyd green nanocomposite film: processing and physico-mechanical properties. J Ind Eng Chem 68:246–256

    CAS  Google Scholar 

  20. Taha TA, Saleh A (2018) Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl Phys A 124(9):1–12

    Google Scholar 

  21. Jayamani E, Tay CP, Bakri MKB, Kakar A (2018) Comparative analysis on dielectric properties of polymer composites reinforced with synthetic and natural fibers. J Vinyl Add Tech 24:E201–E216

    CAS  Google Scholar 

  22. Taha TA, Saad SA (2020) Processing, thermal and dielectric investigations of polyester nanocomposites based on nano-CoFe2O4. Mater Chem Phys 255:123574

    CAS  Google Scholar 

  23. Taha TA, Hassona A, Elrabaie S, Attia MT (2020) Micro-structure, thermal, and dielectric performance of polyester nanocomposites containing nano-Ni0.5Zn0.5 Fe2O4. Appl Phys A 126(9):1–10

    Google Scholar 

  24. Woo HJ, Majid SR, Arof AK (2012) Dielectric properties and morphology of polymer electrolyte based on poly (ɛ-caprolactone) and ammonium thiocyanate. Mater Chem Phys 134(2–3):755–761

    CAS  Google Scholar 

  25. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) Electrical relaxation in a glass-forming molten salt. J Phys Chem 78(6):639–648

    CAS  Google Scholar 

  26. Fahmy T, Elzanaty H (2019) AC conductivity and broadband dielectric spectroscopy of a poly (vinyl chloride)/poly (ethyl methacrylate) polymer blend. Bull Mater Sci 42(5):1–7

    CAS  Google Scholar 

  27. Nasr GM, Mohamed TA, Ahmed RM (2020) Characterization and dielectric properties of fly ash/polystyrene/low density polyethylene composites. In: IOP conference series: materials science and engineering vol 956, no 1. IOP Publishing, p 012002

  28. Ahmed RM, Morsi RMM (2017) Polymer nanocomposite dielectric and electrical properties with quantum dots nanofiller. Mod Phys Lett B 31(30):1750278

    Google Scholar 

  29. Liu J, Zheng H, Zhang Y, Wei H, Liao R (2017) Grey relational analysis for insulation condition assessment of power transformers based upon conventional dielectric response measurement. Energies 10(10):1526

    Google Scholar 

  30. Singha S, Thomas MJ (2008) Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz. IEEE Trans Dielectr Electr Insul 15(1):2–11

    CAS  Google Scholar 

  31. Baraker BM, Lobo B (2019) Dielectric relaxation in a cadmium chloride-doped polymeric blend. Bull Mater Sci 42(1):18

    Google Scholar 

  32. Taha TA, Alomairy S, Saad SA, Tekin HO, Al-Buriahi MS (2021) Synthesis and dielectric relaxation behavior of 55B2O3–15SiO2–30Na2O: WO3 glass system. Ceram Int 47(14):20201–20209

    CAS  Google Scholar 

  33. Dave G, Kanchan D (2018) Dielectric relaxation and modulus studies of PEO-PAM blend based sodium salt electrolyte system. Indian J Pure Appl Phys (IJPAP) 56(12):978–988

    Google Scholar 

  34. Karray M, Triki A, Poilâne C, Picart P, Gargouri M (2016) Dielectric relaxation phenomena in flax fibers composite. Fibers Polym 17(1):88–96

    CAS  Google Scholar 

  35. Nasr GM, Ahmed RM (2010) Ac conductivity and dielectric properties of PMMA/fullerene composites. Mod Phys Lett B 24(09):911–919

    CAS  Google Scholar 

  36. Ravi M, Bhavani S, Kumar KK, Rao VN (2013) Investigations on electrical properties of PVP: KIO4 polymer electrolyte films. Solid State Sci 19:85–93

    CAS  Google Scholar 

  37. Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane. Express Polym Lett 4:300–310

    CAS  Google Scholar 

  38. Orrit-Prat J, Mujal-Rosas R, Rahhali A, Marin-Genesca M, Colom-Fajula X, Belana-Punseti J (2011) Dielectric and mechanical characterization of PVC composites with ground tire rubber. J Compos Mater 45(11):1233–1243

    CAS  Google Scholar 

  39. Psarras GC, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2007) Relaxation phenomena in rubber/layered silicate nanocomposites. Express Polym Lett 1:837–845

    CAS  Google Scholar 

  40. El Hasnaoui M, Graça MPF, Achour ME, Costa LC (2011) Electric modulus analysis of carbon black/copolymer composite materials. Mater Sci Appl 2(10):1421–1426

    Google Scholar 

  41. Zallen R (2008) The physics of amorphous solids. Wiley, New Jersey

    Google Scholar 

  42. Patel HK, Martin SW (1992) Fast ionic conduction in Na2S+B2S3 glasses: compositional contributions to nonexponentiality in conductivity relaxation in the extreme low-alkali-metal limit. Phys Rev B 45(18):10292

    CAS  Google Scholar 

  43. Majhi K, Varma KB (2010) Dielectric relaxation in CaO–Bi2O3–B2O3 glasses. Int J Appl Ceram Technol 7:E89–E97

    Google Scholar 

  44. Madbouly SA, Otaigbe JU (2007) Broadband dielectric spectroscopy of nanostructured maleated polypropylene/polycarbonate blends prepared by in situ polymerization and compatibilization. Polymer 48(14):4097–4107

    CAS  Google Scholar 

  45. Baykal A, Erdemi H, Amir M (2016) Temperature and frequency dependence on electrical properties of Fe3O4@ caffeic acid nanocomposite. J Inorg Organomet Polym Mater 26(1):190–196

    CAS  Google Scholar 

  46. Jonscher AK (1999) Dielectric relaxation in solids. J Phys D Appl Phys 32(14):R57

    CAS  Google Scholar 

  47. Mott NF, Davis EA (2012) Electronic processes in non-crystalline materials. Oxford University Press, Oxford

    Google Scholar 

  48. Papathanassiou AN, Sakellis I, Grammatikakis J (2007) Universal frequency-dependent ac conductivity of conducting polymer networks. Appl Phys Lett 91(12):122911

    Google Scholar 

  49. El-Sayed S, Abel-Baset T, Abou Elfadl A, Hassen A (2015) Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films. Phys B 464:17–27

    CAS  Google Scholar 

  50. Taha TA, Hassona A, Elrabaie S, Attia MT (2020) Dielectric spectroscopy of PVA-Ni0.5Zn0.5Fe2O4 polymer nanocomposite films. J Asian Ceram Soc 8(4):1076–1082

    Google Scholar 

  51. Rizvi TZ, Shakoor A (2009) Electrical conductivity and dielectric properties of polypyrrole/Na+–montmorillonite (PPy/Na+–MMT) clay nanocomposites. J Phys D Appl Phys 42(9):095415

    Google Scholar 

  52. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    CAS  Google Scholar 

  53. Wang S, Chi H, Chen L, Li W, Li Y, Li G, Ge X (2021) Surface functionalization of graphene oxide with polymer brushes for improving thermal properties of the polymer matrix. Adv Polym Technol 2021:1–11

    Google Scholar 

  54. Aziz SB (2013) Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iran Polym J 22(12):877–883

    CAS  Google Scholar 

  55. Aziz SB, Abidin ZHZ (2015) Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: Electrical and dielectric analysis. J Appl Polym Sci 132(15):41774

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant no (DSR-2021-03-0103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Alrowaili.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrowaili, Z.A., Ahmed, R.M., Saleh, A. et al. Broadband dielectric relaxation investigations of polyvinyl chloride-fGO nanocomposite films. Polym. Bull. 80, 3293–3308 (2023). https://doi.org/10.1007/s00289-022-04217-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04217-y

Keywords

Navigation