Skip to main content
Log in

Photoluminescence properties of Eu3+-activated CaMoO4 phosphors for WLEDs applications and its Judd–Ofelt analysis

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of scheelite-type Eu3+-activated CaMoO4 phosphors were synthesized by the nitrate–citrate gel combustion method. All the compounds crystallized in the tetragonal structure with space group I4 1 /a (No. 88). FESEM results reveal the spherical-like morphology. The CaMoO4 phosphor exhibited broad emission centered at 500 nm under the excitation of 298 nm wavelength, while Eu3+-activated CaMoO4 shows an intense characteristic red emission peak at 615 nm at different excitation wavelengths, due to 5D0 → 7F2 transition of Eu3+ ions. The intensities of transitions between different J levels depend on the symmetry of the local environment of Eu3+ ions and were estimated using the Judd–Ofelt analysis. The high asymmetric ratio revealed that Eu3+ occupies sites with a low symmetry and without an inversion center. The CIE chromaticity co-ordinates (x, y) were calculated from emission spectra, and the values were close to the NTSC standard. Therefore, the present phosphor is highly useful for LEDs applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun L, Guo Q, Wu X, Luo S, Pan W, Huang K, Lu J, Ren L, Cao M, Hu C (2007) Synthesis and photoluminescent properties of strontium tungstate nanostructures. J Phys Chem C 111:532–537

    Article  Google Scholar 

  2. Kroger FA (1948) Some aspect of the luminescence of solids. Elsevier, Amsterdam

    Google Scholar 

  3. Driscoll SA, Ozkan US (1994) Isotopic labeling studies on oxidative coupling of methane over alkali promoted molybdate catalysts. Stud Surf Sci Catal 82:367–375

    Article  Google Scholar 

  4. Tanaka K, Miyajima T, Shirai N, Zhang Q, Nakata R (1995) Laser photochemical ablation of CdWO4 studied with the time-of-flight mass spectrometric technique. J Appl Phys 77:6581–6587

    Article  Google Scholar 

  5. Phuruangrat A, Thongtem T, Thongtem S (2009) Preparation, characterization and photoluminescence of nanocrystalline calcium molybdates. J Alloy Compd 481:568–572

    Article  Google Scholar 

  6. Graser R, Pitt E, Scharmann A, Zimmerer G (1975) Optical properties of CaWO4 and CaMoO4 crystals in the 4 to 25 eV region. Phys Status Solidi B 69:359–368

    Article  Google Scholar 

  7. Yu P, Bi J, Xiao DQ, Chen LP, Jin XL, Yang ZN (2006) Preparation and microstructure of CaMoO4 ceramic films prepared through electrochemical technique. J Electroceram 16:473–476

    Article  Google Scholar 

  8. Yoon JW, Ryu JH, Shim KB (2006) Photoluminescence in nanocrystalline MMoO4 (M = Ca, Ba) synthesized by a polymerized complex method. Mater Sci Eng B 127:154–158

    Article  Google Scholar 

  9. Ryu JH, Choi BG, Yoon JW, Shim KB, Machi K, Hamada K (2007) Synthesis of CaMoO4 image nanoparticles by pulsed laser ablation in deionized water and optical properties. J Lumin 124:67–70

    Article  Google Scholar 

  10. Thongtem T, Phuruangrat A, Thongtem S (2010) Microwave-assisted synthesis and characterization of SrMoO4 and SrWO4 nanocrystals. J Nanopart Res 12:2287–2294

    Article  Google Scholar 

  11. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    Article  Google Scholar 

  12. Klug P, Alexander LE (1954) X-ray diffraction procedure. Wiley, New York

    Google Scholar 

  13. William GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  Google Scholar 

  14. Sczancoski JC, Bomio MDR, Cavalcante LS, Joya MR, Pizani PS, Varela JA, Longo E, Siu Li M, Andres JA (2009) Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal. J Phys Chem C 113:5812–5822

    Article  Google Scholar 

  15. Tauc J (1970) Optical properties of solids. North-Holland, Amsterdam

    Google Scholar 

  16. Yoon JW, Choi CJ, Kim D (2011) Laser-induced synthesis of CaMoO4 nanocolloidal suspension and its optical properties. Mater Trans, JIM 52:768–771

    Article  Google Scholar 

  17. Zhang F, Sfeir MY, Misewich JA, Wong SS (2008) Room-temperature preparation, characterization, and photoluminescence measurements of solid solutions of various compositionally-defined single-crystalline alkaline-earth-metal tungstate nanorods. Chem Mater 20:5500–5512

    Article  Google Scholar 

  18. Polak K, Nikl M, Nitsch K, Kobayashi M, Ishii M, Usuki Y, Jarolimek O (1997) The blue luminescence of PbWO4 single crystals. J Lumin 72–74:781–783

    Article  Google Scholar 

  19. Nikl M, Bohacek P, Mihokove E, Kobayashi M, Ishii M, Usuki Y, Babin V, Stolovich A, Zazubovich S, Bacci M (2000) Excitonic emission of scheelite tungstates AWO4 (A = Pb, Ca, Ba, Sr). J Lumin 87–89:1136–1139

    Article  Google Scholar 

  20. Van Tol J, Van Der Waals JH (1996) The lowest triplet state of luminescent scheelites: a study of the MoO4 2− ion by electron paramagnetic resonance with optical detection. Mol Phys 88:803–820

    Google Scholar 

  21. Dieke GH (1968) Spectra and energy levels of rare-earth ions in crystals. Interscience Publishers, New York

    Google Scholar 

  22. Song HJ, Zhou LQ, Huang Y, Li L, Wang T, Yang L (2013) Synthesis, characterization and luminescent properties of La2Zr2O7:Eu3+ nanorods. Chin J Chem Phys 26:83–87

    Article  Google Scholar 

  23. Jack K (2007) Video demystified: a handbook for the digital engineer, 5th edn. Newnes, New York

    Google Scholar 

  24. Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511–519

    Article  Google Scholar 

  25. Rakov N, Amaral DF, Guimaraes RB, Maciel GS (2010) Spectroscopic analysis of Eu3+ -and Eu3+:Yb3+-doped yttrium silicate crystalline powders prepared by combustion synthesis. J Appl Phys 108:073501–073506

    Article  Google Scholar 

  26. Grzyb T, Lis S (2011) Structural and spectroscopic properties of LaOF: Eu3+ nanocrystals prepared by the sol–gel pechini method. Inorg Chem 50:8112–8120

    Article  Google Scholar 

  27. Kumar V, Kumar V, Som S, Duvenhage MM, Ntwaeaborwa OM, Swart HC (2014) Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications. Appl Surf Sci 308:419–430

    Article  Google Scholar 

  28. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12:44–50

    Article  Google Scholar 

  29. McCamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17:142–144

    Article  Google Scholar 

  30. Chen BJ, Pun EYB, Lin H (2009) Photoluminescence and spectral parameters of Eu3+ in sodium–aluminum–tellurite ceramics. J Alloy Compd 479:352–356

    Article  Google Scholar 

  31. Reisfeld R, Zigansky E, Gaft M (2004) Europium probe for estimation of site symmetry in glass films, glasses and crystals. Mol Phys 102:1319–1330

    Article  Google Scholar 

  32. Cross AM, May PS, van Veggel FCJM, Berry MT (2010) Dipicolinate sensitization of europium luminescence in dispersible 5 % Eu: LaF3 nanoparticles. J Phys Chem C 114:14740–14747

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (R.S.) greatly acknowledges Professor Ashok K. Nagawat and Dr. K.V.R. Rao, Centre for Converging Technologies, University of Rajasthan for encouragement. Authors are thankful to DST-IRHPA for FESEM and EDX facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Shivakumara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraf, R., Shivakumara, C., Dhananjaya, N. et al. Photoluminescence properties of Eu3+-activated CaMoO4 phosphors for WLEDs applications and its Judd–Ofelt analysis. J Mater Sci 50, 287–298 (2015). https://doi.org/10.1007/s10853-014-8587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8587-3

Keywords

Navigation