Skip to main content
Log in

Synthesis, characterization, and antimicrobial activity of poly(GMA-co-EGDMA) polymer decorated with silver nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Composite consisting of silver nanoparticles coordinated to poly(GMA-co-EGDMA) macroporous copolymer was prepared by attachment of amino group to the poly(GMA-co-EGDMA) in the reaction with ethylene diamine, and consequent reduction of silver ions with amino groups at elevated temperature. The infrared measurements indicated that surface of silver nanoparticles is passivated through the coordination of the lone pair on the N atom of the imine present in the skeleton of the poly(GMA-co-EGDMA) copolymer. The inductively coupled plasma atomic emission, UV–Vis reflection spectroscopy, X-ray diffraction, and transmission electron microscopy measurements revealed the high content (52 wt%) of well-separated silver nanoparticles in the size range of 5–10 nm onto composite. Antimicrobial efficiency of composite was tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus, and fungus C. albicans in wide concentration range of composite. The composite ensured almost maximum reduction of both bacteria, while the fungi reduction reached 96.5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Panacek A, Kvitek L, Prucek R, Kolar M, Veceroca R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  Google Scholar 

  2. Rai M, Yadev A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  Google Scholar 

  3. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  Google Scholar 

  4. Li Q, Mahendra S, Lyon D, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Article  Google Scholar 

  5. Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F (2007) Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol–gel processes. Biomacromolecules 8:1246–1254

    Article  Google Scholar 

  6. Qyanedel-Craver VA, Smith JA (2008) Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol 42:927–933

    Article  Google Scholar 

  7. Radetić M, Ilić V, Vodnik V, Dimitrijević S, Jovančić P, Šaponjić Z, Nedeljković JM (2008) Antibacterial effect of silver nanoparticles deposited on corona-treated polyester polyamide fabrics. Polym Adv Technol 19:1816–1821

    Article  Google Scholar 

  8. Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331:50–56

    Article  Google Scholar 

  9. Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S (2009) Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 10:1429–1435

    Article  Google Scholar 

  10. Ilić V, Šaponjić Vodnik V, Molina R, Dimitrijević S, Jovančić P, Nedeljković J, Radetić M (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44:3983–3990. doi:10.1007/s10853-009-3547-z

    Article  Google Scholar 

  11. Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetić M (2009) The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohyd Polym 78:564–569

    Article  Google Scholar 

  12. Ilić V, Šaponjić Z, Vodnik V, Lazarević S, Dimitrijević S, Jovančić P, Nedeljković JM, Radetić M (2010) Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Ind Eng Chem Res 49:7287–7293

    Article  Google Scholar 

  13. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998

    Article  Google Scholar 

  14. Mthombeni NH, Mpenyana-Monyatsi L, Onyango MS, Momba MNB (2012) Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column. J Hazard Mater 217–218:133–140

    Article  Google Scholar 

  15. Diagne F, Malaisamy R, Boddie V, Holbrook RD, Eribo B, Jones KL (2012) Polyelectrolyte and silver nanoparticle modification of microfiltration membranes to mitigate organic and bacterial fouling. Environ Sci Technol 46:4025–4033

    Article  Google Scholar 

  16. Ferreira A, Bigan M, Blondeau D (2003) Optimization of a polymeric HPLC phase: poly(glycidyl methacrylate-co-ethylene dimethacrylate): influence of the polymerization conditions on the pore structure of macroporous beads. React Funct Polym 56:123–136

    Article  Google Scholar 

  17. Miletić N, Rohandi R, Vuković Z, Nastović A, Loos K (2009) Surface modification of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resin for improved Candida antartica lipase B immobilization. React Funct Polym 69:68–75

    Article  Google Scholar 

  18. Herault D, Saluzzo C, Lemaire M (2006) Preparation of monodisperse enntiomerically pure methacrylate–ethylene glycol dimethacrylate copolymers in dispersion copolymerization: functionalization. React Funct Polym 66:567–577

    Article  Google Scholar 

  19. Nastović A, Jovanović S, Djordjević D, Onjia A, Jakovljević D, Novaković T (2004) Metal sorption on macroporous poly(GMA-co-EGDMA) modified with ethylene diamine. React Funct Polym 58:139–147

    Article  Google Scholar 

  20. Podlesnyuk VV, Hradil J, Marutovskii RM, Kliermenko NA, Fridman LE (1997) Sorption of organic compounds from aqueous solution by glycidyl methacrylate–styrene–ethylene dimethacrylate terpolymers. React Funct Polym 33:275–288

    Article  Google Scholar 

  21. Marinović S, Vuković Z, Nastović A, Milutinović-Nikolić A, Jovanović D (2011) Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)/clay composites. Mater Chem Phys 128:291–297

    Article  Google Scholar 

  22. Lv Y, Alejandro FM, Frechet JMJ, Svec F (2012) Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J Chromatogr A 1261:121–128

    Article  Google Scholar 

  23. Jovanović S, Nastović A, Jovanović N, Jeremić K, Savić Z (1994) The influence of inert component composition on the porous structure of glycidyl methacrylate/ethylene glycol dimethacrylate copolymers. Agnew Makromol Chem 219:161–168

    Article  Google Scholar 

  24. Varesano A, Vineis C, Aluigi A, Rombaldoni F (2011) Antimicrobial polymers for textile products. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, vol 3., Formatex, microbiology series No 3University of Extremadura, Badajoz, pp 99–110

    Google Scholar 

  25. Miletić N (2009) Improved biocatalysts based on Candida antartica lipase B immobilization. PhD Dissertation, University of Groningen

  26. Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, New York

    Google Scholar 

  27. Chen M, Feng Y-G, Wang X, Li T-C, Zhang J-Y, Qian D-J (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23:5296–5304

    Article  Google Scholar 

  28. Vukoje ID, Vodnik VV, Džunuzović JV, Džunuzović ES, Marinović-Cincović M, Jeremić K, Nedeljković JM (2014) Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization. Mater Res Bull 49:434–439

    Article  Google Scholar 

  29. Vuković VV, Nedeljković JM (1993) Surface modification of nanometer scale silver particles by imidazole. Langmuir 9:980–983

    Article  Google Scholar 

  30. Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorptions, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471

    Article  Google Scholar 

  31. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  Google Scholar 

  32. Yonglai Z, Hong D, Shu W, Sen L, Yuanpeng W, Feng-Shou X (2010) Hierarchical macroporous epoxy resin template from single semi-fluorinated surfactant. J Porous Mater 17:693–698

    Article  Google Scholar 

  33. Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    Article  Google Scholar 

  34. Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  Google Scholar 

  35. Sotiriou GA, Meyer A, Knijnenburg JTN, Panke S, Pratsinis SE (2012) Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 28:15929–15936

    Article  Google Scholar 

  36. Hwang I-S, Lee J, Hwang JH, Kim K-J, Lee DG (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J 279:1327–1338

    Article  Google Scholar 

  37. Linares CEB, Griebeler D, Cargnelutti D, Alves SH, Morsch VM, Schetinger MRC (2006) Catalase activity in Candida albicans exposed to antineoplastic drugs. J Med Microbiol 55:259–262

    Article  Google Scholar 

  38. Park B, Nizet V, Liu GY (2008) Role of Staphylococcus aureus catalase in niche competition against Streptococcus pneumonia. J Bacteriol 190:2275–2278

    Article  Google Scholar 

  39. Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 39:77–85

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant 45020). TEM characterization work was supported by the U.S. Department of Energy, Contract No. DE-FG02-08ER64624.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovan M. Nedeljković.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 2724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vukoje, I.D., Džunuzović, E.S., Vodnik, V.V. et al. Synthesis, characterization, and antimicrobial activity of poly(GMA-co-EGDMA) polymer decorated with silver nanoparticles. J Mater Sci 49, 6838–6844 (2014). https://doi.org/10.1007/s10853-014-8386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8386-x

Keywords

Navigation