Skip to main content
Log in

Application of high-pressure torsion to Al-6 %Cu-0.4 %Zr alloy for ultrafine-grain refinement and superplasticity

  • Ultrafinegrained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An Al-6 %Cu-0.4 %Zr alloy was processed by high-pressure torsion to produce an ultrafine-grained structure with a grain size of ~200 nm at the steady-state level where the hardness remains constant with straining. Tensile testing showed that a maximum elongation of ~530 % was attained at 673 K with an initial strain rate of 1 × 10−3 s−1. Evaluation of the strain-rate sensitivity and the activation energy for the deformation confirmed that grain boundary sliding through grain boundary diffusion is the rate-controlling process for the superplastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barnes AJ (1994) Superplastic forming of aluminum alloys. Langdon TG (ed.) Superplastic in advanced materials (ICSAM-1994). Mater Sci Forum 170–172:701–714

  2. Langdon TG (2009) Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci 44:5998–6010

    Article  Google Scholar 

  3. Sakai G, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng, A 393:344–351

    Article  Google Scholar 

  4. Lee S, Furukawa M, Horita Z, Langdon TG (2003) Developing a superplastic forming capability in a commercial aluminum alloy without scandium or zirconium additions. Mater Sci Eng A342:294–301

    Google Scholar 

  5. Ota S, Akamatsu H, Neishi K, Furukawa M, Horita Z, Langdon TG (2002) Low-temperature superplasticity in aluminium alloys processed by equal-channel angular pressing. Mater Trans 43:2364–2369

    Article  Google Scholar 

  6. Dobatkin SV, Bastarache EN, Sakai G, Fujita T, Horita Z, Langdon TG (2005) Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A408:141–146

    Article  Google Scholar 

  7. Horita Z, Langdon TG (2008) Achieving exceptional superplasticity in a bulk aluminum alloy processed by high-pressure torsion. Scripta Mater 58:1029–1032

    Article  Google Scholar 

  8. Xu C, Dobatkin SV, Horita Z, Langdon TG (2009) Superplastic flow in a nanostructured aluminum alloy produced using high-pressure torsion. Mater Sci Eng A50:170–175

    Article  Google Scholar 

  9. Yang X, Miura H, Sakai T (2002) Continuous dynamic recrystallization in a superplastic 7075 aluminum alloys. Mater Trans 43:2400–2407

    Article  Google Scholar 

  10. Sherby OD, Wadsworth J (1989) Superplasticity recent-advances and future directions. Progress in Mater Sci 33:169–221

    Article  Google Scholar 

  11. Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796

    Article  Google Scholar 

  12. Katsas S, Dashwood R, Grimes R, Jackson M, Todda G, Henein H (2007) Dynamic recrystallisation and superplasticity in pure aluminium with zirconium addition. Mater Sci Eng A444:291–297

    Article  Google Scholar 

  13. Kaibyshev R, Kazyhanov V (1999) Texture and microstructure evolution during superplasticity of the metal matrix composite PM 2014 Al-20% Al2O3. Texture Microstruct 32:83–99

    Article  Google Scholar 

  14. Kovacs-Csetenyi E, Torma T, Turmezey T, Chinh NQ, Juhasz A, Kovacs I (1992) Superplasticity of AlMgSi alloys. J Mater Sci 27:6141–6145

    Article  Google Scholar 

  15. Eddahbi M, McNelley TR, Ruano OA (2001) The evolution of grain boundary character during superplastic deformation of an Al-6 Pct Cu-0.4 Pct Zr Alloy. Metall Mater Trans A32A:1093–1102

    Article  Google Scholar 

  16. Figueiredo RB, Kawasaki M, Xu C, Langdon TG (2008) Achieving superplastic behavior in fcc and hcp metals processed by equal-channel angular pressing. Mater Sci Eng, A 493:104–110

    Article  Google Scholar 

  17. Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG (2000) Superplastic forming at high strain rates after severe plastic deformation. Acta Mater 48:3633–3640

    Article  Google Scholar 

  18. Neishi K, Horita Z, Langdon TG (2003) Achieving superplasticity in ultrafine-grained copper: influence of Zn and Zr additions. Mater Sci Eng A352:129–135

    Article  Google Scholar 

  19. Figueiredo RB, Langdon TG (2009) Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing. Scripta Mater 61:84–87

    Article  Google Scholar 

  20. Garcia-Infanta JM, Zhilyaev AP, Sharafutdinov A, Ruano OA, Carreno FJ (2009) An evidence of high strain rate superplasticity at intermediate homologous temperatures in an Al–Zn–Mg–Cu alloy processed by high-pressure torsion. Alloys Compd 473:163–166

    Article  Google Scholar 

  21. Edalati K, Toh S, Watanabe M, Horita Z (2012) In situ production of bulk intermetallic-based nanocomposites and nanostructured intermetallics by high-pressure torsion. Scripta Mater 66:386–389

    Article  Google Scholar 

  22. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Progress in Mater Sci 53:893–979

    Article  Google Scholar 

  23. Rentenberger C, Waitz T, Karnthaler HP (2004) HRTEM analysis of nanostructured alloys processed by severe plastic deformation. Scripta Mater 51:789–794

    Article  Google Scholar 

  24. Edalati K, Horita Z (2010) Application of high-pressure torsion for consolidation of ceramic powders. Scripta Mater 63:174–177

    Article  Google Scholar 

  25. Edalati K, Toh S, Ikoma Y, Horita Z (2011) Plastic deformation and allotropic phase transformations in zirconia ceramics during high-pressure torsion. Scripta Mater 65:974–977

    Article  Google Scholar 

  26. Hasegawa H, Komura S, Utsunomiya A, Horita Z, Furukawa M, Nemoto M, Langdon TG (1999) Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions. Mater Sci Eng A265:188–196

    Article  Google Scholar 

  27. Wadsworth J, Henshall CA, Pelton AR, Ward B Mater (1985) Superplastic properties of an AI–Cu–Li–Zr alloy. J Sci Lett 4:674–678

    Article  Google Scholar 

  28. Malek P, Turba K, Cieslar M, Drbohlav I, Kruml T (2007) Structure development during superplastic deformation of an Al–Mg–Sc–Zr alloy. Mater Sci Eng, A 462:95–99

    Article  Google Scholar 

  29. Furukawa M, Berbon PB, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1998) Age hardening and the potential for superplasticity in a fine-grained Al–Mg–Li–Zr Alloy. Metall Mater Trans A 29A:169–177

    Article  Google Scholar 

  30. Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng, A 137:35–40

    Article  Google Scholar 

  31. Padmanabhan KA, Hirsch J, Lucke K (1991) Superplasticity-dislocation creep interactions in a coarse grained Al–Cu–Zr alloy. J Mater Sci 26:5309–5317

    Article  Google Scholar 

  32. Malek P, Cieslar M, Jezek J (1999) Superplasticity in a powder metallurgy Al–Cu–Zr Alloy. Phys Stat Sol 175:467–480

    Article  Google Scholar 

  33. Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, UK

  34. Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Observation of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scripta Mater 37:1945–1950

    Article  Google Scholar 

  35. Xu C, Horita Z, Langdon TG (2007) The evolution of homogeneity in processing by high-pressure torsion. Acta Mater 55:203–212

    Article  Google Scholar 

  36. Edalati K, Fujioka T, Horita Z (2008) Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater Sci Eng, A 497:168–173

    Article  Google Scholar 

  37. Higashi K (1998) Advances and applications in high strain rate superplasticity. Met Mater Int 4:498–502

    Google Scholar 

  38. Langdon TG (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metal Mater 42:2437–2443

    Article  Google Scholar 

  39. Mohamed FA (2011) Micrograin superplasticity: characteristics and utilization. Mater 4:1194–1223

    Google Scholar 

  40. Juhasz A, Chinh NQ, Tasnadi P, Kovacs I, Turmezey T (1987) Superplasticity of aluminium alloys grain-refined by zirconium. J Mater Sci 22:137–143

    Article  Google Scholar 

  41. Mehrer H (1990) Numerical data and functional relationship in science and technology, diffusion in solid metals and alloys, vol. 26. Springer, Berlin

    Book  Google Scholar 

  42. Bricknell RH, Bentley AP (1979) The activation energy for superplastic flow in Al-6Cu-0.4Zr. J Mater Sci 14:2547–2554

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Shinsuke Nakashima for helpful assistance. One of the authors (AA) would like to thank Indonesian Government for a PhD scholarship through the Directorate of Higher Education Program (DGHE). This work was supported in part by the Light Metals Educational Foundation of Japan and in part by a Grant-in-Aid for Scientific Research from the MEXT, Japan, in Innovative Areas “Bulk Nanostructured Metals” 22102004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Alhamidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamidi, A., Horita, Z. Application of high-pressure torsion to Al-6 %Cu-0.4 %Zr alloy for ultrafine-grain refinement and superplasticity. J Mater Sci 49, 6689–6695 (2014). https://doi.org/10.1007/s10853-014-8362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8362-5

Keywords

Navigation