Skip to main content
Log in

Accurate Surface Reconstruction in 3D Using Two-dimensional Parallel Cross Sections

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In medical imaging or computational biology, it is required to reconstruct a surface from contours in cross sections for visualization and further processing. We propose a method to generate a surface which is smooth enough and exactly passes through contours in each cross section. For smoothness, we first define an energy of the surface using the gradient of the normal vector. Then, we express the surface using a level set function and assign values of level set function on each cross section to make the surface exactly passing through contours. Finally, we get an energy minimization problem with constraints, which can be solved using the augmented Lagrangian method and the alternating direction method. The solution of the minimization problem is the surface which we look for. Implementation of the algorithm and numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer, New York (2006)

    Google Scholar 

  2. Bajaj, C.L., Coyle, E.J., Lin, K.N.: Arbitrary topology shape reconstruction from planar cross sections. Graph. Models Image Process. 58, 524–543 (1996)

    Article  Google Scholar 

  3. CGAL: Computational geometry algorithms library. http://www.cgal.org

  4. Chai, J., Miyoshi, T., Nakamae, E.: Contour interpolation and surface reconstruction of smooth terrain models. In: Proceedings of the Conference on Visualisation 1998, pp. 27–33. IEEE (1998)

  5. Eigen. http://eigen.tuxfamily.org/index.php?title=Main_Page

  6. Fang, Q.: iso2mesh: a 3d surface and volumetric mesh generator for MATLAB, Octave. http://iso2mesh.sourceforge.net/cgi-bin/index.cgi

  7. Fuchs, H., Kedem, Z.M., Uselton, S.P.: Optimal surface reconstruction from planar contours. Commun. ACM 20, 693–702 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hormann, K., Spinello, S., Schröder, P.: C1-continuous terrain reconstruction from sparse contours. In: Proceedings of the Vision, Modeling, and Visualization Conference 2003, pp. 289–297 (2003)

  9. Jeon, K., Lee, C.-O.: CoReHA 2.0: a software package for in vivo MREIT experiments. Comput. Math. Methods. Med. 2013, 941745 (2013). doi:10.1155/2013/941745

  10. Jung, Y., Chu, K.T., Torquato, S.: A variational level set approach for surface area minimization of triply-periodic surfaces. J. Comput. Phys. 223, 711–730 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karma, A., Rappel, W.J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323–4349 (1998)

    Article  MATH  Google Scholar 

  12. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on geometry processing, pp. 61–70 (2006)

  13. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  Google Scholar 

  14. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, vol. 153. Springer, New York (2003)

    MATH  Google Scholar 

  15. Seo, J.K., Woo, E.J.: Magnetic resonance electrical impedance tomography (MREIT). SIAM Rev. 53, 40–68 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  17. Si, H.: TetGen: A quality tetrahedral mesh generator and a 3d delaunay triangulator. http://wias-berlin.de/software/tetgen/

  18. Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface processing via normal maps. ACM Trans. Graph. (TOG) 22, 1012–1033 (2003)

    Article  Google Scholar 

  19. Wright, S., Nocedal, J.: Numerical Optimization, vol. 2. Springer, New York (1999)

    MATH  Google Scholar 

  20. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. Comput. Vis. Image Underst. 80, 295–314 (2000)

    Article  MATH  Google Scholar 

  22. Zhu, W., Tai, X.C., Chan, T.: Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput. 57, 414–438 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Un Kim.

Additional information

This work was supported by NRF-2011-0015399.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SU., Lee, CO. Accurate Surface Reconstruction in 3D Using Two-dimensional Parallel Cross Sections. J Math Imaging Vis 53, 182–195 (2015). https://doi.org/10.1007/s10851-015-0566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0566-z

Keywords

Navigation