Skip to main content
Log in

Continuous-Discrete Extended Kalman Filter on Matrix Lie Groups Using Concentrated Gaussian Distributions

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper we generalize the continuous-discrete extended Kalman filter (CD-EKF) to the case where the state and the observations evolve on connected unimodular matrix Lie groups. We propose a new assumed density filter called continuous-discrete extended Kalman filter on Lie groups (CD-LG-EKF). It is built upon a geometrically meaningful modeling of the concentrated Gaussian distribution on Lie groups. Such a distribution is parametrized by a mean and a covariance matrix defined on the Lie group and in its associated Lie algebra respectively. Our formalism yields tractable equations for both non-linear continuous time propagation and discrete update of the distribution parameters under the assumption that the posterior distribution of the state is a concentrated Gaussian. As a side effect, we contribute to the derivation of the first and second order differential of the matrix Lie group logarithm using left connection. We also show that the CD-LG-EKF reduces to the usual CD-EKF if the state and the observations evolve on Euclidean spaces. Our approach leads to a systematic methodology for the design of filters, which is illustrated by the application to a camera pose filtering problem with observations on Lie group. In this application, the CD-LG-EKF significantly outperforms two constrained non-linear filters (one based on a linearization technique and the other on the unscented transform) applied on the embedding space of the Lie group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Supplementary material and Matlab code are available at https://sites.google.com/site/guillaumebourmaud/

  2. Dementia Ambient Care Project: http://www.demcare.eu

References

  1. Abbaspour, H., Moskowitz, M.: Basic Lie Theory. World Scientific, Hackensack (2007)

    Book  MATH  Google Scholar 

  2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)

    Google Scholar 

  3. Ado, I.: The representation of Lie algebras by matrices. Uspekhi Matematicheskikh Nauk 2(6), 159–173 (1947)

    MathSciNet  Google Scholar 

  4. Arasaratnam, I., Haykin, S., Hurd, T.: Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Trans. Signal Process. 58, 4977–4993 (2010)

    Article  MathSciNet  Google Scholar 

  5. Arnaudon, M.: onnexions et martingales dans les groupes de Lie. Séminaire de Probabilités XXVI, pp. 146–156. Springer, Berlin (1992)

    Chapter  Google Scholar 

  6. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2006, pp. 924–931. Springer, Berlin (2006)

    Chapter  Google Scholar 

  7. Barfoot, T.D., Furgale, P.T.: Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Robot. 30(3), 679–693. doi:10.1109/tro.2014.2298059 (2014).

  8. Bayro-Corrochano, E., Zhang, Y.: The motor extended Kalman filter: a geometric approach for rigid motion estimation. J. Math. Imaging Vis. 13(3), 205–228 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bonnabel, S.: Left-invariant extended Kalman filter and attitude estimation. In: IEEE Conference on Decision and Control (2007).

  10. Bonnabel, S., Martin, P., Salan, E.: Invariant extended Kalman filter : theory and application to a velocity-aided attitude estimation problem. In: IEEE Conference on Decision and Control and 28th Chinese Control Conference (2009).

  11. Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu, Y.: Discrete extended Kalman filter on Lie groups. In: Signal Processing Conference (EUSIPCO), Proceedings of the 21st European (2013).

  12. Chirikjian, G.: Information-theoretic inequalities on unimodular Lie groups. J. Geom. Mech. 2, 119–158 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chirikjian, G.: Stochastic Models, Information Theory, and Lie Groups. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  14. Crassidis, J., Markley, F.: Unscented filtering for spacecraft attitude estimation. J. Guid. Control. Dyn. 26, 536–542 (2003)

    Article  Google Scholar 

  15. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  16. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    Book  MATH  Google Scholar 

  17. Gilmore, R.: Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  18. Hall, B.: Lie Groups, Lie Algebras, and Representations An Elementary Introduction. Springer, New York (2003)

    Book  MATH  Google Scholar 

  19. Hall, J., Knoebel, N., McLain, T.: Quaternion attitude estimation for miniature air vehicles using a multiplicative extended Kalman. In: Position, Location and Navigation Symposium, pp. 1230–1237 (2008).

  20. Hauberg, S., Lauze, F., Pedersen, K.S.: Unscented Kalman filtering on Riemannian manifolds. J. Math. Imaging Vis. pp. 1–18 (2013). http://link.springer.com/article/10.1007/s10851-012-0372-9

  21. Julier, S.J., Uhlmann, J.K.: New extension of the Kalman filter to nonlinear systems. Signal Process., Sensor Fusion, Target Recognit. VI 3068, 182–193 (1997). doi:10.1117/12.280797

    Article  Google Scholar 

  22. Kovk, I., Michor, P., Slovak, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)

    Google Scholar 

  23. Kraft, E.: A quaternion-based unscented Kalman filter for orientation tracking. In: International Conference on Information Fusion, vol. 1, pp. 47–54 (2003)

  24. Lefferts, E., Markley, F., Shuster, M.: Kalman filtering for spacecraft attitude estimation. J. Guid. Control Dyn. 5(5), 417–429 (1982)

    Article  Google Scholar 

  25. Lui, Y.: Advances in matrix manifolds for computer vision. Image Vis. Comput. 30, 380–388 (2011)

    Article  MathSciNet  Google Scholar 

  26. Markley, F.: Attitude error representation for Kalman filtering. J. Guid. Control Dyn. 26(2), 311–317 (2003)

    Article  MathSciNet  Google Scholar 

  27. Martin, P., Salaun, E.: Generalized multiplicative extended Kalman filter for aided attitude and heading reference system. In: AIAA Guidance, Navigation and Control Conference (2010).

  28. Maybeck, P.: Stochastic Models, Estimation, and Control. Academic Press, New York (1979)

    MATH  Google Scholar 

  29. Moreno-Noguer, F., Lepetit, V., Fua, P.: Accurate non-iterative o(n) solution to the pnp problem. In: IEEE International Conference on Computer Vision (2007).

  30. Mourikis, A., Trawny, N., Roumeliotis, S., Johnson, A., Ansar, A., Matthies, L.: Vision-aided inertial navigation for spacecraft entry, descent, and landing. IEEE Trans. Robot. 25(2), 264–280 (2009)

    Article  Google Scholar 

  31. Park, W., Liu, Y., Zhou, Y., Moses, M., Chirikjian, G.S.: Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map. Robotica 26(4), 419–434 (2008)

    Article  MATH  Google Scholar 

  32. Rentmeesters, Q., Absil, P., Van Dooren, P., Gallivan, K., Srivastava, A.: An efficient particle filtering technique on the Grassmann manifold. In: IEEE International Conference on Acoustics Speech and Signal Processing (2010).

  33. Rudkovskii, M.: Twisted product of Lie groups. Sib. Math. J. 38(5), 969–977 (1997)

    Article  MathSciNet  Google Scholar 

  34. Saccon, A., Aguiar, A., Hauser, J.: Lie group projection operator approach : Optimal control on tso(3). In: IEEE Conference on Decision and Control and European Control Conference (2011).

  35. Said, S., Manton, J.H.: Extrinsic mean of Brownian distributions on compact Lie groups. IEEE Trans. Inf. Theory 58(6), 3521–3535 (2012)

    Article  MathSciNet  Google Scholar 

  36. Sarkka, S.: On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. Autom. Control 52(9), 1631–1641 (2007)

    Article  MathSciNet  Google Scholar 

  37. Selig, J.M.: Lie groups and Lie algebras in robotics. In: Computational Noncommutative Algebra and Applications, NATO Science Series II: Mathematics, Physics and Chemistry. vol. 136, pp. 101–125. Springer (2004). http://dx.doi.org/10.1007/1-4020-2307-3_5

  38. Simon, D.: Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theory Appl. 4(8), 1303–1318 (2010)

    Article  MathSciNet  Google Scholar 

  39. Singer, H.: Continuous-discrete unscented Kalman filtering. Technical Report, (2006)

  40. Sipos, B.: Application of the manifold-constrained unscented Kalman filter. In: Position, Location and Navigation Symposium, pp. 30–43 (2008).

  41. Snoussi, H., Mohammad-Djafari, A.: Particle filtering on Riemannian manifolds. In: AIP Conference, vol. Issue 1, p219, vol. 872 (2006).

  42. Tompkins, F., Wolfe, P.J.: Bayesian filtering on the Stiefel manifold. In: IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (2007).

  43. Trawny, N., Mourikis, A., Roumeliotis, S., Johnson, A., Montgomery, J.: Vision-aided inertial navigation for pin-point landing using observations of mapped landmarks. J. Field Robot. 24, 357–378 (2007)

    Article  Google Scholar 

  44. Trawny, N., Roumeliotis, S.: Indirect Kalman filter for 3d attitude estimation. Technical report, University of Minnesota, (2005)

  45. Wang, Y., Chirikjian, G.: Error propagation on the Euclidean group with applications to manipulators kinematics. IEEE Trans. Robot. 22, 591–602 (2006)

    Article  Google Scholar 

  46. Wang, Y., Chirikjian, G.S.: Nonparametric second-order theory of error propagation on motion groups. Int. J. Rob. Res. 27(11–12), 1258–1273 (2008)

    Article  Google Scholar 

  47. Wannous, H., Dovgalecs, V., Mégret, R., Daoudi, M.: Place recognition via 3d modeling for personal activity lifelog using wearable camera. In: Advances in Multimedia Modeling, Lecture Notes in Computer Science, vol. 7131, pp. 244–254. Springer (2012). http://dx.doi.org/10.1007/978-3-642-27355-1_24

  48. Wolfe, K., Mashner, M., Chirikjian, G.: Bayesian fusion on Lie groups. J. Algebr. Stat. 2, 75–97 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This research has received funding from the European Communitys Seventh Framework Programme (FP7/2007-2013) under Grant agreement 288199 Dem@Care

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bourmaud.

Appendices

Properties and Notations

Property 1

First order Taylor expansion of \(\text{ Ad }_{G}\left( \cdot \right) \):

$$\begin{aligned}&\text{ Ad }_{G}\left( \text{ exp }_{G}\left( \left[ a\right] _{G}^{\wedge }\right) \right) =\text{ exp }_{G}\left( \text{ ad }_{G}\left( a\right) \right) \nonumber \\&\quad =\text{ Id }_{p\times p}+\text{ ad }_{G}\left( a\right) +O\left( \left\| a\right\| ^{2}\right) \end{aligned}$$
(134)

where \(a\in \mathbb {R}^{p}\).

Property 2

First order Taylor expansion of \(\text{ exp }_{G}\left( \cdot \right) \):

$$\begin{aligned} \text{ exp }{}_{G}\left( \epsilon _{\wedge }\right) =\text{ Id }_{n\times n}+\epsilon _{\wedge }+\frac{1}{2} \epsilon _{\wedge }^{2}+O\left( \left\| \epsilon _{\wedge }\right\| ^{3}\right) \end{aligned}$$
(135)

where \(\epsilon _{\wedge }\in \mathfrak {g}\)

Property 3

Adjoint properties:

$$\begin{aligned}&\left( \text{ ad }_{G}\left( x\right) \right) _{ij} =L_{ij}^{T}x\end{aligned}$$
(136)
$$\begin{aligned}&\left( \text{ ad }_{G}\left( x\right) ^{T}\right) _{ij} =\left( \text{ ad }_{G}\left( x\right) \right) _{ji}=L_{ji}^{T}x\end{aligned}$$
(137)

where \(L_{ij}\in \mathbb {R}^{p\times 1}\) and \(x\in \mathbb {R}^{p\times 1}\). We have:

$$\begin{aligned}&\left( \text{ ad }_{G}\left( x\right) R\text{ ad }_{G}\left( x\right) ^{T}\right) {}_{ij}\nonumber \\&\quad =\mathbb {E}\left( \sum _{k=1}^{p}\sum _{l=1}^{p} \left( \text{ ad }_{G}\left( x\right) \right) _{ik}R_{kl}\left( \text{ ad }_{G}\left( x\right) ^{T}\right) _{lj}\right) \nonumber \\&\quad =\mathbb {E}\left( \sum _{k=1}^{p}\sum _{l=1}^{p} L_{ik}^{T}xR_{kl}L_{jl}^{T}x\right) \nonumber \\&\quad =\mathbb {E}\left( \sum _{k=1}^{p}\sum _{l=1}^{p} R_{kl}L_{ik}^{T}xx^{T}L_{jl}\right) \nonumber \\&\quad =\sum _{k=1}^{p}\sum _{l=1}^{p}R_{kl}L_{ik}^{T}xx^{T}L_{jl} \end{aligned}$$
(138)

and

$$\begin{aligned} \left( \text{ ad }_{G}\left( x\right) ^{2}\right) _{ij}&=\sum _{k=1}^{p}\left( \text{ ad }_{G}\left( x\right) \right) _{ik}\left( \text{ ad }_{G}\left( x\right) \right) _{kj}\nonumber \\&=\sum _{k=1}^{p}L_{ik}^{T}xL_{kj}^{T}x\nonumber \\&=\sum _{k=1}^{p}L_{ik}^{T}xx^{T}L_{kj} \end{aligned}$$
(139)

Propagation

For the following dynamical equation where \(f\) and \(G\) are bounded and Lipschitz functions:

$$\begin{aligned} dx=f\left( x\right) dt+G\left( x\right) d\beta \end{aligned}$$
(140)

where \(\beta \) is a Brownian process with diffusion matrix \(Q\left( t\right) \), and \(x\in \mathbb {R}^{m}\), the mean and covariance propagation equations are:

$$\begin{aligned}&\dot{m}_{x}=\mathbb {E}\left[ f\left( x\right) \right] \end{aligned}$$
(141)
$$\begin{aligned}&\dot{P}_{x} =\left( \mathbb {E}\left[ f\left( x\right) x^{T}\right] - \mathbb {E}\left[ f\left( x\right) \right] m_{x}^{T}\right) \nonumber \\&\qquad \quad +\left( \mathbb {E}\left[ xf\left( x\right) ^{T}\right] -m_{x}\mathbb {E}\left[ f\left( x\right) ^{T}\right] \right) \nonumber \\&\qquad \quad +\mathbb {E}\left( G\left( x\right) QG\left( x\right) ^{T}\right) \end{aligned}$$
(142)

see [28] Vol.2 Chap.11 Sec.6.

Update

Let \(A\in G\) et \(b,c\in \mathbb {R}^{p}\), then:

$$\begin{aligned} A\text{ exp }\left( b+c\right)&=A\text{ exp }\left( b\right) \text{ exp }\left( -b\right) \text{ exp }\left( b+c\right) \nonumber \\&\overset{(16)}{=}A\text{ exp }\left( b\right) \text{ exp }\left( \varPhi \left( b\right) c+O\left( \left\| c\right\| ^{2}\right) \right) \end{aligned}$$
(143)

After the Lie algebraic error update step (3.4.1) we have:

$$\begin{aligned} X_{k|k}&=\mu _{k|k-1}\text{ exp }{}_{G}\left( \left[ \epsilon _{k|k}^{-}\right] _{G}^{\wedge }\right) \nonumber \\&=\mu _{k|k-1}\text{ exp }{}_{G}\left( \left[ m_{k|k}^{-}+r_{k|k}^{-}\right] _{G}^{\wedge }\right) \end{aligned}$$
(144)

where \(r_{k|k}^{-}\sim \mathcal {N}_{\mathbb {R}^{p}} \left( \varvec{0}_{p\times 1},P_{k|k}^{-}\right) \). Applying (143), we obtain:

$$\begin{aligned}&X_{k|k}=\mu _{k|k-1}\text{ exp }{}_{G}\left( \left[ m_{k|k}^{-}\right] _{G}^{\wedge }\right) \nonumber \\&\quad \text{ exp }{}_{G}\left( \left[ \varPhi _{G}\left( m_{k|k}^{-}\right) \epsilon _{k|k}^{-}+O\left( \left\| \epsilon _{k|k}^{-}\right\| ^{2}\right) \right] _{G}^{\wedge }\right) \nonumber \\&\quad =\mu _{k|k}\text{ exp }{}_{G}\left( \left[ \epsilon _{k|k}\right] _{G}^{\wedge }\right) \end{aligned}$$
(145)

where

$$\begin{aligned}&\mu _{k|k}=\mu _{k|k-1}\text{ exp }{}_{G}\left( \left[ m_{k|k}^{-}\right] _{G}^{\wedge }\right) \end{aligned}$$
(146)
$$\begin{aligned}&\quad \epsilon _{k|k}=\varPhi _{G}\left( m_{k|k}^{-}\right) \epsilon _{k|k}^{-} +O\left( \left\| \epsilon _{k|k}^{-}\right\| ^{2}\right) \end{aligned}$$
(147)

From the previous expression and neglecting terms in \(O\left( \left\| \epsilon _{k|k}^{-}\right\| ^{2}\right) \):

$$\begin{aligned}&\mathbb {E}\left[ \epsilon {}_{k|k}\right] =\varvec{0}_{p\times 1} \end{aligned}$$
(148)
$$\begin{aligned}&P_{k|k}=\mathbb {E}\left[ \epsilon {}_{k|k}\epsilon {}_{k|k}^{T}\right] \nonumber \\&\quad =\mathbb {E}\left[ \varPhi _{G}\left( m_{k|k}^{-}\right) \epsilon _{k|k}^{-}\epsilon _{k|k}^{-T}\varPhi _{G}\left( m_{k|k}^{-}\right) ^{T}\right] \nonumber \\&\quad =\varPhi _{G}\left( m_{k|k}^{-}\right) P_{k|k}^{-} \varPhi _{G}\left( m_{k|k}^{-}\right) ^{T} \end{aligned}$$
(149)

\(SO\left( 3\right) \) Properties

  • \(\text{ exp }_{SO\left( 3\right) }\), \(\text{ log }_{SO\left( 3\right) }\) and \(\varPhi _{SO\left( 3\right) }\) can be computed efficiently using Rodrigues’ rotation formulae [37]

  • Let \(a=\left[ \begin{array}{c} a_{1}\\ a_{2}\\ a_{3} \end{array}\right] \) then \(\left[ a\right] _{SO\left( 3\right) }^{\wedge }=\left[ \begin{array}{ccc} 0 &{} -a_{3} &{} a_{2}\\ a_{3} &{} 0 &{} -a_{1}\\ -a_{2} &{} a_{1} &{} 0 \end{array}\right] \)

  • Let \(b\in \mathbb {R}^{3}\) then \(\left[ a\right] _{SO\left( 3\right) }^{\wedge }b=\left[ b\right] ^{*}a\) where \(\left[ b\right] ^{*}=-\left[ b\right] _{SO\left( 3\right) }^{\wedge }\)

  • \(\text{ ad }_{SO\left( 3\right) }\left( a\right) =\left[ a\right] _{SO\left( 3\right) }^{\wedge }\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourmaud, G., Mégret, R., Arnaudon, M. et al. Continuous-Discrete Extended Kalman Filter on Matrix Lie Groups Using Concentrated Gaussian Distributions. J Math Imaging Vis 51, 209–228 (2015). https://doi.org/10.1007/s10851-014-0517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0517-0

Keywords

Navigation