Skip to main content
Log in

Falsification-Aware Calculi and Semantics for Normal Modal Logics Including S4 and S5

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

Falsification-aware (hyper)sequent calculi and Kripke semantics for normal modal logics including S4 and S5 are introduced and investigated in this study. These calculi and semantics are constructed based on the idea of a falsification-aware framework for Nelson’s constructive three-valued logic. The cut-elimination and completeness theorems for the proposed calculi and semantics are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almukdad, A., & Nelson, D. (1984). Constructible falsity and inexact predicates. Journal of Symbolic Logic, 49(1), 231–233.

    Article  Google Scholar 

  • Avron, A. (1996). The method of hypersequents in the proof theory of propositional non-classical logic. In Logic: From Foundations to Applications (pp. 1–32).

  • Bednarska, K., & Indrzejczak, A. (2015). Hypersequent calculi for S5: The methods of cut elimination. Logic and Logical Philosophy, 24(3), 277–311.

    Google Scholar 

  • Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2003). Counterexample-guided abstraction refinement for symbolic model checking. Journal of the ACM, 50(5), 752–794.

    Article  Google Scholar 

  • Czermak, J. (1977). A remark on Gentzen’s calculus of sequents. Notre Dame Journal of Formal Logic, 18, 471–474.

    Article  Google Scholar 

  • Gentzen, G. (1969). Collected papers of Gerhard Gentzen. In M. E. Szabo (Ed.), Studies in logic and the foundations of mathematics, North-Holland (English translation).

  • Goodman, N. D. (1981). The logic of contradiction. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27, 119–126.

    Article  Google Scholar 

  • Goranko, V. (1994). Refutation systems in modal logic. Studia Logica, 53, 299–324.

    Article  Google Scholar 

  • Grigoriev, O., & Petrukhin, Y. (2019). On a multilattice analogue of a hypersequent S5 calculus. Logic and Logical Philosophy, 28, 683–730.

    Google Scholar 

  • Gurevich, Y. (1977). Intuitionistic logic with strong negation. Studia Logica, 36, 49–59.

    Article  Google Scholar 

  • Gurfinkel, A., Wei, O., & Chechik, M. (2006). Yasm: A software model-checker for verification and refutation. In Proceedings of the 18th international conference on computer aided verification (CAV 2006) (pp. 170–174).

  • Horn, L.R., & Wansing, H. (2017). Negation, The Stanford Encyclopedia of Philosophy (Spring 2017 Edition). In E. N. Zalta (Ed.), Last modified on January. https://plato.stanford.edu/archives/spr2017/entries/negation/

  • Kamide, N. (2010). An embedding-based completeness proof for Nelson’s paraconsistent logic. Bulletin of the Section of Logic, 39(3/4), 205–214.

    Google Scholar 

  • Kamide, N. (2019). An extended paradefinte Belnap–Dunn logic that is embeddable into classical logic and vice versa. In Proceedings of the 11th international conference on agents and artificial intelligence (ICAART 2019) (Vol. 2, pp. 377–387).

  • Kamide, N. (2021). Modal and intuitionistic variants of extended Belnap–Dunn logic with classical negation. Journal of Logic, Language and Information, 30(3), 491–531.

    Article  Google Scholar 

  • Kamide, N. (2022). Falsification-aware semantics and sequent calculi for classical logic. Journal of Philosophical Logic, 51(3), 99–126.

    Article  Google Scholar 

  • Kamide, N., & Shramko, Y. (2017). Embedding from multilattice logic into classical logic and vice versa. Journal of Logic and Computation, 27(5), 1549–1575.

    Google Scholar 

  • Kamide, N., & Shramko, Y. (2017). Modal multilattice logic. Logica Universalis, 11(3), 317–343.

    Article  Google Scholar 

  • Kamide, N., & Wansing, H. (2012). Proof theory of Nelson’s paraconsistent logic: A uniform perspective. Theoretical Computer Science, 415, 1–38.

    Article  Google Scholar 

  • Kamide, N., & Wansing, H. (2015). Proof theory of N4-related paraconsistent logics. Studies in Logic, 54, 1–401.

    Google Scholar 

  • Kamide, N., & Zohar, Y. (2019). Yet another paradefinite logic: The role of conflation. Logic Journal of the IGPL, 27(1), 93–117.

    Google Scholar 

  • Kamide, N., & Zohar, Y. (2020). Modal extension of ideal paraconsistent four-valued logic and its subsystem. Annals of Pure and Applied Logic, 171(10), 102830.

    Article  Google Scholar 

  • Kripke, S. A. (1963). Semantical analysis of modal logic I Normal modal propositional calculi. Zeitschrift für mathematische logik und grundlagen der mathematik, 9, 67–96.

    Article  Google Scholar 

  • Kurokawa, H. (2013). Hypersequent calculi for modal logics extending S4. New Frontiers in Artificial Intelligence, Lecture Notes in Computer Science, 8417, 51–68.

    Google Scholar 

  • Lahav, O. (2013). From frame properties to hypersequent rules in modal logics. In Proceedings of the 28th Annual ACM/IEEE Symposium on Logic in Computer Science (pp 408–417).

  • Łukasiewicz, J. (1951). Aristotle’s syllogistic from the standpoint of modern formal logic, Oxford, (Aristotle’s syllogistic from the standpoint of modern formal logic—Greek & Roman philosophy, Taylor & Francis, 1987).

  • Łukowski, P. (2002). A deductive-reductive form of logic: General theory and intuitionistic case. Logic and Logical Philosophy, 10, 59–78.

    Article  Google Scholar 

  • Nelson, D. (1949). Constructible falsity. Journal of Symbolic Logic, 14, 16–26.

    Article  Google Scholar 

  • Ohnishi, M., & Matsumoto, K. (1957). Gentzen method in modal calculi. Osaka Mathematical Journal, 9, 113–130.

    Google Scholar 

  • Ohnishi, M., & Matsumoto, K. (1959). Gentzen method in modal calculi II. Osaka Mathematical Journal, 11, 115–120.

    Google Scholar 

  • Poggiolesi, F. (2008). A cut-free simple sequent calculus for modal logic S5. Review of Symbolic Logic, 1(1), 3–15.

    Article  Google Scholar 

  • Pottinger, G. (1983). Uniform cut-free formulations of T, S 4 and S 5 (abstract). Journal of Symbolic Logic, 48, 900.

    Google Scholar 

  • Rauszer, C. (1974). A formalization of the propositional calculus of H-B logic. Studia Logica, 33, 23–34.

    Article  Google Scholar 

  • Rauszer, C. (1977). Applications of Kripke models to Heyting–Brouwer logic. Studia Logica, 36, 61–71.

    Article  Google Scholar 

  • Rauszer, C. (1980). An algebraic and Kripke-style approach to a certain extension of intuitionistic logic, Dissertations Mathematicae. Polish Scientific Publishers, pp. 1–67.

  • Rautenberg, W. (1979). Klassische und nicht-klassische Aussagenlogik. Braunschweig: Vieweg.

    Book  Google Scholar 

  • Restall, G. (2007). Proofnets for S5: Sequents and circuits for modal logic. In Proceedings of logic colloquium 2005, lecture notes in logic (Vol. 28, pp. 151–172). Cambridge University Press.

  • Shramko, Y. (2005). Dual intuitionistic logic and a variety of negations: The logic of scientific research. Studia Logica, 80(2–3), 347–367.

    Article  Google Scholar 

  • Skura, T. F. (1995). A Łukasiewicz-style refutation system for the modal logic S4. Journal of Philosophical Logic, 24, 573–582.

    Article  Google Scholar 

  • Skura, T. F. (2002). Refutations, proofs, and models in the modal logic K4. Studia Logica, 70(2), 193–204.

    Article  Google Scholar 

  • Skura, T. F. (2011). Refutation systems in propositional logic. Handbook of Philosophical Logic, 16, 115–157.

    Article  Google Scholar 

  • Skura, T. F. (2017). Refutations in Wansing’s logic. Reports on Mathematical Logic, 52, 83–99.

    Article  Google Scholar 

  • Urbas, I. (1996). Dual-intuitionistic logic. Notre Dame Journal of Formal Logic, 37(3), 440–451.

    Article  Google Scholar 

  • Vorob’ev, N. N. (1952). A constructive propositional calculus with strong negation. Doklady Akademii Nauk SSSR, 85, 465–468 (in Russian).

    Google Scholar 

  • Wansing, H. (1993). The logic of information structures, lecture notes in artificial intelligence (Vol. 681, pp. 1–163). Springer-Verlag.

    Book  Google Scholar 

  • Wansing, H. (1995). Semantics-based nonmonotonic inference. Notre Dame Journal of Formal Logic, 36, 44–54.

    Article  Google Scholar 

  • Wansing, H. (2002). Sequent systems for modal logics. In D. Gabbay & F. Guenther (Eds.), Handbook of philosophical logic (2nd ed., Vol. 8, pp. 61–145). Kluwer Academic Publisher.

  • Wansing, H. (2016). Falsification, natural deduction and bi-intuitionistic logic. Journal of Logic and Computation, 26(1), 425–450.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for his or her valuable comments and suggestions. This research was supported by JSPS KAKENHI Grant Numbers JP18K11171 and JP16KK0007 and Grant-in-Aid for Takahashi Industrial and Economic Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Kamide.

Ethics declarations

Conflict of interest

The author has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamide, N. Falsification-Aware Calculi and Semantics for Normal Modal Logics Including S4 and S5. J of Log Lang and Inf 32, 395–440 (2023). https://doi.org/10.1007/s10849-022-09386-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-022-09386-7

Keywords

Navigation