Skip to main content
Log in

Inclusion of 1,8-octanediphosphonic acid in cucurbit[7]uril: a combined solid state and solution study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The inclusion of 1,8-octanediphosphonic acid (OA) in cucurbit[7]uril (Q[7]) has been investigated via a combined solid state and solution study. The reaction of OA and Q[7] in water led to the formation of a 1:1 inclusion compound 1 as a white crystalline material. Synchrotron single crystal X-ray diffraction revealed its detailed structure validated by Raman spectroscopy with featured vibrational modes from both organic molecules. Subsequent 1H solution NMR data supported the formation of a 1:1 inclusion complex in aqueous solution. The changes in NMR chemical shifts are consistent with the solid-state orientation in which the phosphonic acid groups of OA are oriented externally to the carbonyl portals and the intervening alkyl chain lies within the cavity of Q[7]. However, the solution study also inferred possible formations of other complexes in solution. This work highlighted the advantage of combining solid state and solution studies to reveal the detailed molecular interactions involving complex inclusion phenomena.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000). https://doi.org/10.1021/ja993376p

    Article  CAS  Google Scholar 

  2. Liu, S., Zavalij, P.Y., Isaacs, L.: Cucurbit[10]uril. J. Am. Chem. Soc. 127, 16798–16799 (2005). https://doi.org/10.1021/ja056287n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Assaf, K.I., Nau, W.M.: Cucurbiturils: From synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015). https://doi.org/10.1039/C4CS00273C

    Article  CAS  PubMed  Google Scholar 

  4. Lee, J.W., Samal, S., Selvapalam, N., Kim, H.-J., Kim, K.: Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003). https://doi.org/10.1021/ar020254k

    Article  CAS  PubMed  Google Scholar 

  5. Kim, K., Selvapalam, N., Ko, Y.H., Park, K.M., Kim, D., Kim, J.: Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36, 267–279 (2007). https://doi.org/10.1039/B603088M

    Article  CAS  PubMed  Google Scholar 

  6. Wyman, I.W., Macartney, D.H.: Cucurbit[7]uril host–guest complexes with small polar organic guests in aqueous solution. Org. Biomol. Chem. 6, 1796–1801 (2008). https://doi.org/10.1039/B801650J

    Article  CAS  PubMed  Google Scholar 

  7. Jeon, W.S., Moon, K., Park, S.H., Chun, H., Ko, Y.H., Lee, J.Y., Lee, E.S., Samal, S., Selvapalam, N., Rekharsky, M.V., Sindelar, V., Sobransingh, D., Inoue, Y., Kaifer, A.E., Kim, K.: Complexation of ferrocene derivatives by the cucurbit[7]uril host: A comparative study of the cucurbituril and cyclodextrin host families. J. Am. Chem. Soc. 127, 12984–12989 (2005). https://doi.org/10.1021/ja052912c

    Article  CAS  PubMed  Google Scholar 

  8. Freeman, W.A., Mock, W.L., Shih, N.-Y.: Cucurbituril J. Am. Chem. Soc. 103, 7367–7368 (1981). https://doi.org/10.1021/ja00414a070

    Article  CAS  Google Scholar 

  9. Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015). https://doi.org/10.1021/acs.chemrev.5b00341

    Article  CAS  PubMed  Google Scholar 

  10. Walker, S., Oun, R., McInnes, F.J., Wheate, N.J.: The potential of cucurbit[n]urils in drug delivery. Isr. J. Chem. 51, 616–624 (2011). https://doi.org/10.1002/ijch.201100033

    Article  CAS  Google Scholar 

  11. Wheate, N.J., Buck, D.P., Day, A.I., Collins, J.G.: Cucurbit[n]uril binding of platinum anticancer complexes. Dalton Trans. 451–458 (2006). https://doi.org/10.1039/B513197A

  12. Kuok, K.I., Li, S., Wyman, I.W., Wang, R.: Cucurbit[7]uril: An emerging candidate for pharmaceutical excipients. Ann. N Y Acad. Sci. 1398, 108–119 (2017). https://doi.org/10.1111/nyas.13376

    Article  CAS  PubMed  Google Scholar 

  13. Virovets, A.V., Blatov, V.A., Shevchenko, A.P.: Methods of crystallochemical analysis of supramolecular complexes by means of Voronoi-Dirichlet polyhedra: A study of cucurbituril host-guest compounds. Acta Crystallogr. Sect. B. 60, 350–357 (2004). https://doi.org/10.1107/S0108768104005051

    Article  CAS  Google Scholar 

  14. Florea, M., Nau, W.M.: Strong binding of hydrocarbons to cucurbituril probed by fluorescent dye displacement: A supramolecular gas-sensing ensemble. Angew Chem. Int. Ed. 50, 9338–9342 (2011). https://doi.org/10.1002/anie.201104119

    Article  CAS  Google Scholar 

  15. Zhang, S., Grimm, L., Miskolczy, Z., Biczók, L., Biedermann, F., Nau, W.M.: Binding affinities of cucurbit[n]urils with cations. Chem. Commun. 55, 14131–14134 (2019). https://doi.org/10.1039/C9CC07687E

    Article  CAS  Google Scholar 

  16. Ni, X.-L., Xiao, X., Cong, H., Liang, L.-L., Cheng, K., Cheng, X.-J., Ji, N.-N., Zhu, Q.-J., Xue, S.-F., Tao, Z.: Cucurbit[n]uril-based coordination chemistry: From simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 42, 9480–9508 (2013). https://doi.org/10.1039/C3CS60261C

    Article  CAS  PubMed  Google Scholar 

  17. Cao, L., Šekutor, M., Zavalij, P.Y., Mlinarić-Majerski, K., Glaser, R., Isaacs, L.: Cucurbit[7]uril⋅guest pair with an attomolar dissociation constant. Angew Chem. Int. Ed. 53, 988–993 (2014). https://doi.org/10.1002/anie.201309635

    Article  CAS  Google Scholar 

  18. Nau, W.M., Florea, M., Assaf, K.I.: Deep inside cucurbiturils: Physical properties and volumes of their inner cavity determine the hydrophobic driving force for host–guest complexation. Isr. J. Chem. 51, 559–577 (2011). https://doi.org/10.1002/ijch.201100044

    Article  CAS  Google Scholar 

  19. Li, J.-R., Sculley, J., Zhou, H.-C.: Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012). https://doi.org/10.1021/cr200190s

    Article  CAS  PubMed  Google Scholar 

  20. Bulut, A., Zorlu, Y., Topkaya, R., Aktaş, B., Doğan, S., Kurt, H., Yücesan, G.: Macrocyclic Cu(II)-organophosphonate building block with room temperature magnetic ordering. Dalton Trans. 44, 12526–12529 (2015). https://doi.org/10.1039/C5DT01596K

    Article  CAS  PubMed  Google Scholar 

  21. Bulut, A., Maares, M., Atak, K., Zorlu, Y., Çoşut, B., Zubieta, J., Beckmann, J., Haase, H., Yücesan, G.: Mimicking cellular phospholipid bilayer packing creates predictable crystalline molecular metal–organophosphonate macrocycles and cages. CrystEngComm. 20, 2152–2158 (2018). https://doi.org/10.1039/C8CE00072G

    Article  CAS  Google Scholar 

  22. Gagnon, K.J., Perry, H.P., Clearfield, A.: Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 112, 1034–1054 (2012). https://doi.org/10.1021/cr2002257

    Article  CAS  PubMed  Google Scholar 

  23. Yu, Z.-C., Lu, Y., Shan, P.-H., Fan, Y., Tao, Z., Xiao, X., Wei, G., Prior, T.J., Redshaw, C.: A study of the inclusion complex formed between cucurbit[8]uril and isonicotinic acid. J. Incl. Phenom. Macrocycl. Chem. 102, 619–628 (2022). https://doi.org/10.1007/s10847-022-01141-6

    Article  CAS  Google Scholar 

  24. Gao, Z.-Z., Kan, J., Tao, Z., Bian, B., Xiao, X.: A stimuli-responsive supramolecular assembly between inverted cucurbit[7]uril and hemicyanine dye. New. J. Chem. 42, 15420–15426 (2018). https://doi.org/10.1039/C8NJ03344G

    Article  CAS  Google Scholar 

  25. Zhang, Y., Liu, M., Karatchevtseva, I., Price, J.R., Tao, Z., Wei, G.: Yttrium and lanthanide (ln = La and Gd) complexes with cucurbit[10]uril: Crystals transforming from supramolecular networks to coordination nanotubes. New. J. Chem. 44, 18208–18215 (2020). https://doi.org/10.1039/D0NJ03962D

    Article  CAS  Google Scholar 

  26. Yao, Y.-Q., Zhang, Y.-J., Huang, C., Zhu, Q.-J., Tao, Z., Ni, X.-L., Wei, G.: Cucurbit[10]uril-based smart supramolecular organic frameworks in selective isolation of metal cations. Chem. Mater. 29, 5468–5472 (2017). https://doi.org/10.1021/acs.chemmater.7b01751

    Article  CAS  Google Scholar 

  27. Zhang, Y., Panjikar, S., Chen, K., Karatchevtseva, I., Tao, Z., Wei, G.: Lanthanoid heteroleptic complexes with cucurbit[5]uril and dicarboxylate ligands: From discrete structures to one-dimensional and two-dimensional polymers. Inorg. Chem. 58, 506–515 (2019). https://doi.org/10.1021/acs.inorgchem.8b02732

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y., Karatchevtseva, I., Liu, M., Tao, Z., Wei, G.: Thorium(IV) and uranium(IV) complexes with cucurbit[8]uril: Supramolecular structures via direct coordination and second-shell interactions. Polyhedron. 192, 114826 (2020). https://doi.org/10.1016/j.poly.2020.114826

    Article  CAS  Google Scholar 

  29. Xu, W., Liu, M., Escaño, M.C., Redshaw, C., Bian, B., Fan, Y., Tao, Z., Xiao, X.: Alkyl substituted 4-pyrrolidinopyridinium salts encapsulated in the cavity of cucurbit[10]uril. New. J. Chem. 43, 7028–7034 (2019). https://doi.org/10.1039/C9NJ01089K

    Article  CAS  Google Scholar 

  30. Mock, W.L., Shih, N.-Y.: Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem. 51, 4440–4446 (1986). https://doi.org/10.1021/jo00373a018

    Article  CAS  Google Scholar 

  31. Biedermann, F., Uzunova, V.D., Scherman, O.A., Nau, W.M., De Simone, A.: Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012). https://doi.org/10.1021/ja303309e

    Article  CAS  PubMed  Google Scholar 

  32. van Megen, M., Frank, W., Reiss, G.J.: A detailed comparative structural study of the hydrogen bonded networks in solids, obtained by the reaction of 4,4′-bipyridine and varied alkane-α,ω-diphosphonic acids. CrystEngComm. 18, 3574–3584 (2016). https://doi.org/10.1039/C5CE02156A

    Article  Google Scholar 

  33. Aragão, D., Aishima, J., Cherukuvada, H., Clarken, R., Clift, M., Cowieson, N.P., Ericsson, D.J., Gee, C.L., Macedo, S., Mudie, N., Panjikar, S., Price, J.R., Riboldi-Tunnicliffe, A., Rostan, R., Williamson, R., Caradoc-Davies, T.T.: MX2: A high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Rad. 25, 885–891 (2018). https://doi.org/10.1107/S1600577518003120

    Article  Google Scholar 

  34. Kabsch, W.: Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. Sect. D. 66, 133–144 (2010). https://doi.org/10.1107/S0907444909047374

    Article  CAS  Google Scholar 

  35. Sheldrick, G.M.: SADABS, Empirical Absorption and Correction Software. University of Göttingen, Göttingen (1996)

    Google Scholar 

  36. Sheldrick, G.M.: SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A. 71, 3–8 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  37. Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. 71, 3–8 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  38. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H.: OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Synthesis and characterization of materials were carried out in the facilities under Nuclear Science and Technology (NST) at ANSTO. The crystallographic data for compound 1 were collected on the MX2 beamline at the Australian Synchrotron, a part of ANSTO, and made use of the Australian Cancer Research Foundation (ACRF) detector.

Author information

Authors and Affiliations

Authors

Contributions

M.C. performed synthesis and solution NMR; I.K. did Raman measurement; A. A. performed NOESY NMR experiment; Y.Z. collected single crystal data and did structure refinement; all authors contributed to the paper writing and editing.

Corresponding author

Correspondence to Yingjie Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cagnes, M., Karatchevtseva, I., Angeloski, A. et al. Inclusion of 1,8-octanediphosphonic acid in cucurbit[7]uril: a combined solid state and solution study. J Incl Phenom Macrocycl Chem 104, 149–159 (2024). https://doi.org/10.1007/s10847-024-01227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-024-01227-3

Keywords

Navigation