Skip to main content
Log in

Molecular insights into the complex formation between dodecamethylcucurbit[6]uril and phenylenediamine isomers

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The complexation behavior of diprotonated phenylenediamine isomers with decamethylene cucurbit[6]uril (Me12Q[6]) in 1:1 and 1:2 stoichiometry was investigated in vacuum and solution using density functional theory (DFT). Among the isomers, o-phenylenediamine (oPDA) forms an exclusion complex in 1:1 stoichiometry, while others form an inclusion complex. In the 1:2 stoichiometry, at least one of the guest molecule lie on the surface of the Me12Q[6] cavity. The structural reorganization was found to depend on the mode of interaction of the guest molecule. In the gas phase, the enthalpy and Gibbs free energy are negative for all the complexes demonstrating the encapsulation process is spontaneous and thermodynamically favorable. In the solution phase, the enthalpy and entropy are negative for complexes with guest molecules meta- and para-isomers of phenylenediamine. For oPDA as a guest, the enthalpy and entropy are positive indicating the complex formation to be nonspontaneous. The MESP isosurface of complexes shows a higher accumulation of charge in the 1:2 stoichiometry, which reduces their stability. AIM analysis shows the interaction between oPDA and Me12Q[6] is due to hydrogen bonding with moderate strength, while for the other isomers, interactions between the benzene group and the Me12Q[6] cavity were noticed. EDA analysis shows the larger contribution is the electrostatic attraction and it decreases with the increase in the guest ratio. The formation of inclusion complexes by mPDA and pPDA and the surface adsorption of oPDA on Me12Q[6] and the higher accumulation of positive charge during solvation in oPDA@Me12Q[6] complexes make them labile in the solution phase.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Freewan, W.A., Mock, W.L., Shih, N.-Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981). https://doi.org/10.1021/ja00414a070

    Article  Google Scholar 

  2. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005). https://doi.org/10.1002/anie.200460675

    Article  CAS  Google Scholar 

  3. Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologs: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5,7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000). https://doi.org/10.1021/ja993376p

    Article  CAS  Google Scholar 

  4. Isaacs, L., Park, S.-K., Liu, S., Ko, Y.H., Selvapalam, N., Kim, Y., Kim, H., Zavalij, P.Y., Ki, G.-H., Lee, H.-S., Kim, K.: The inverted cucurbit[n]uril family. J. Am. Chem. Soc. 127, 18000–18001 (2005). https://doi.org/10.1021/ja056988k

    Article  CAS  PubMed  Google Scholar 

  5. Kim, S.K., Park, K.M., Singha, K., Kim, J., Ahn, Y., Kim, K., Kim, W.J.: Galactosylated cucurbituril-inclusion polyplex for hepatocyte-targeted gene delivery. Chem. Commun. 46, 692–694 (2010). https://doi.org/10.1039/B920753H

    Article  CAS  Google Scholar 

  6. Zhao, J., Kim, H.-J., Kim, S.-Y., Lee, J.W., Sakamoto, S., Yamaguchi, K., Kim, O.: Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem. Int. Ed. 40, 4233–4235 (2001). https://doi.org/10.1002/1521-3773(20011119)40:22%3c4233::AID-ANIE4233%3e3.0.CO;2-D

    Article  CAS  Google Scholar 

  7. Kim, K., Selvapalam, N., Oh, D.H.: Cucurbiturils—a new family of host molecules. J. Incl. Phenom. Macrocycl. Chem. 50, 31–36 (2004). https://doi.org/10.1007/s10847-004-8835-7

    Article  CAS  Google Scholar 

  8. Ghosh, S.K., Dhamija, A., Ko, Y.H., An, J., Hur, M.Y., Boraste, D.R., Seo, J., Lee, E., Park, K.M., Kim, K.: Superacid-mediated functionalization of hydroxylated cucurbit[n]urils. J. Am. Chem. Soc. 141, 17503–17506 (2019). https://doi.org/10.1021/jacs.9b09639

    Article  CAS  PubMed  Google Scholar 

  9. Chubarova, E.V., Sokolov, M.N., Samsonenko, D.G., Vincent, C., Fedin, V.P.: Supramolecular compounds of chloroaquacomplexes {Mo3Q4(H2O)9xClx}(4–x) + (Q = S, Se; x=2,3,5) with cucurbit[n]urils. J. Struct. Chem. 47, 939–945 (2006). https://doi.org/10.1007/s10947-006-0411-8

    Article  CAS  Google Scholar 

  10. Fedin, V.P., Virovets, A.V., Sokolov, M.N., Dybtsev, D.N., Gerasko, O.A., Clegg, W.: Supramolecular assemblies based on cucurbituril adducts of hydrogen-bonded molybdenum and tungsten incomplete cuboidal aqua complexes. Inorg. Chem. 39, 2227–2230 (2000). https://doi.org/10.1021/ic000026r

    Article  CAS  PubMed  Google Scholar 

  11. Lin, R.-G., Long, L.-S., Huang, R.-B., Zheng, L.-S.: Directing role of hydrophobic–hydrophobic and hydrophilic–hydrophilic interactions in the self-assembly of calixarenes/cucurbiturils-based architectures. Cryst. Growth Des. 8, 791–794 (2008). https://doi.org/10.1021/cg701084x

    Article  CAS  Google Scholar 

  12. Efremova, O.A., Mironov, Y.V., Kuratieva, N.V., Fedorov, V.E.: Novel supramolecular compounds based on cucurbit[6]uril, 1,8-diaminooctane and octahedral thiohydroxo anions with cluster core {Re6S8}. Inorg. Chem. Acta 363, 4411–4415 (2010). https://doi.org/10.1016/j.ica.2010.06.032

    Article  CAS  Google Scholar 

  13. Tian, X., Chen, L.X., Yao, Y.Q., Chen, K., Chen, M.-D., Zhu, X., Tao, Z.: 4-Sulfocali[4]arene/cucurbit[7]uril-based supramolecular assemblies through the outer surface interactions of cucurbit[n]uril. ACS Omega 3, 6665–6672 (2018). https://doi.org/10.1021/acsomega.8b00829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ni, X.-L., Xiao, X., Cong, H., Zhu, Q.-J., Xue, S.-F., Tao, Z.: Self-assemblies based on the “outer-surface interactions” of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. Acc. Chem. Res. 47, 1386–1395 (2014). https://doi.org/10.1021/ar5000133

    Article  CAS  PubMed  Google Scholar 

  15. Ji, N.-N., Cheng, X.-J., Zhao, Y., Liang, L.-L., Ni, X.-N., Xiao, X., Zhu, Q.-J., Xue, S.-F., Dong, N., Tao, Z.: Tetrachloridometallate dianion-incuded cucurbit[8]uril supramolecular assemblies with large channels and their potential applications for extraction coating on solid-phase microextraction fibres. Inorg. Chem. 53, 21–23 (2014). https://doi.org/10.1021/ic4025684

    Article  CAS  PubMed  Google Scholar 

  16. Smitha, B., Suhanya, D., Sridhar, S., Ramakrishna, M.: Separation of organic–organic mixtures by pervaporation—a review. J. Membr. Sci. 241, 1–21 (2004). https://doi.org/10.1016/j.memsci.2004.03.042

    Article  CAS  Google Scholar 

  17. Kandambeth, S., Mallick, A., Lukose, B., Mane, M.V., Heine, T., Banerjee, R.: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19254–19527 (2012). https://doi.org/10.1021/ja308278w

    Article  CAS  Google Scholar 

  18. Lin, K., Gόmez-Bombarelli, R., Beh, E.S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M.J., Gordon, R.G.: A redox-flow battery with an alloxazine-based organic electrolyte. Nat. Energy 1, 16102 (2016). https://doi.org/10.1038/nenergy.2016.102

    Article  CAS  Google Scholar 

  19. Friedemann, M.N., Robinson, S.W., Gerhardt, G.A.: o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal. Chem. 68, 2621–2628 (1996). https://doi.org/10.1021/ac960093w

    Article  CAS  PubMed  Google Scholar 

  20. Sagasser, J., Ma, B.N., Baecker, D., Salcher, S., Hermann, M., Lamprecht, J., Angerer, S., Obexer, P., Kircher, B., Gust, R.: A new approach in cancer treatment: discovery of chloro[N,N-disalicydine-1,2-phenylenediamine]iron(III) complexes a ferroptosis inducers. J. Med. Chem. 62, 8053–8061 (2019). https://doi.org/10.1021/acs.jmedchem.9b00814

    Article  CAS  PubMed  Google Scholar 

  21. Hajiaghababaei, L., Eslambolipour, M., Badiei, A., Ganjali, M.R., Ziarani, G.M.: Controlled release of anticancer drug using o-phenylenediamine functionalized SBA-15 as a novel nanocarrier. Chem. Pap. 75, 1841–1850 (2021). https://doi.org/10.1007/s11696-020-01422-9

    Article  CAS  Google Scholar 

  22. Alaqeel, S.I.: Synthetic approaches to benzimidazoles from o-phenylenediamine: a literature review. J. Saudi Chem. Soc. 21, 229–237 (2017). https://doi.org/10.1016/j.jscs.2016.08.001

    Article  CAS  Google Scholar 

  23. Li, B., Xu, K., Wang, Y., Su, H., Chi, L., Li, C.: Selective complexation and efficient separation of cis/trans-1,2-dichloroethene isomers by a pillar[5]arene. RSC Adv. 10, 45112–45115 (2020). https://doi.org/10.1039/D0RA09307F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shan, P., Lin, R., Liu, M., Tao, Z., Xiao, X., Liu, J.: Recognition of glycine by cucurbit[5]uril and cucurbit[6]uril: a comparative study of exo- and endo-binding. Chin. Chem. Lett. 32, 2301–2304 (2021). https://doi.org/10.1016/j.cclet.2021.02.020

    Article  CAS  Google Scholar 

  25. Liu, L., Nouvel, N., Scherman, O.A.: Controlled catch and release of small molecules with cucurbit[6]uril via a kinetic trap. Chem. Commun. (2009). https://doi.org/10.1039/B903033F

    Article  Google Scholar 

  26. Hirani, Z., Taylor, H.F., Babcock, E.F., Bockus, A.T., Varnado, C.D., Bielawski, C.W., Urbach, A.R.: Molecular recognition of methionine-terminated peptides by cucucrbit[8]uril. J. Am. Chem. Soc. 140, 12263–12269 (2018). https://doi.org/10.1021/jacs.8b07865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao, L., Zhang, Y.-Q., Lin, R.-L., Liu, J.-X., Tao, Z.: Controllable synthesis of dodecamethylcucurbit[6]uril and its application in separating phenylenediamine isomers. Cryst. Growth Des. 21, 2993–2999 (2021). https://doi.org/10.1021/acs.cgd.1c00141

    Article  CAS  Google Scholar 

  28. Cao, L., Guo, H.-L., Lin, R.-L., Zhang, Z.-H., Tian, L.-F., Liu, J.-X., Tao, Z.: Separation of phenylenediamine isomers by using decamethylcucurbit[5]uril. New J. Chem. 45, 2754–2759 (2021). https://doi.org/10.1039/D0NJ05999D

    Article  CAS  Google Scholar 

  29. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian, Inc., Wallingford CT (2016)

  30. Grimme, S.: Supramolecular binding thermodynamics by disperstion-corrected density functional theory. Chem. Eur. J. 18, 9955–9964 (2012). https://doi.org/10.1002/chem.201200497

    Article  CAS  PubMed  Google Scholar 

  31. Klamt, A., Jonas, V., Bürger, T., Lohrenz, J.C.W.: Refinement and parameterization of COSMO-RS. J. Phys. Chem. A 102, 5074–5085 (1998). https://doi.org/10.1021/jp980017s

    Article  CAS  Google Scholar 

  32. AIMAll (Version 19.10.12), Todd A. Keith, TK Gristmill Software, Overland Park KS (aim.tkgristmill.com) (2019)

  33. Venkataramanan, N.S., Suvitha, A.: Encapsulation of sulfur, oxygen and nitrogen mustards by cucurbiturils: a DFT study. J. Incl. Phenom. Macrocycl. Chem. 83, 387–400 (2015). https://doi.org/10.1007/s10847-015-0575-y

    Article  CAS  Google Scholar 

  34. Lu, T., Chen, F.W.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  35. Velde, G.T., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001). https://doi.org/10.1002/jcc.1056

  36. Venkataramanan, N.S., Suvitha, A., Sahara, R., Kawazoe, Y.: A computational study on the complexation of bisbenzimdazolyl derivatives with cucurbituril and cyclohexylcucurbituril. J. Incl. Phenom. Macrocycl. Chem. 100, 217–231 (2021). https://doi.org/10.1007/s10847-021-01078-2

    Article  CAS  Google Scholar 

  37. Mecozzi, S., Rebek, J., Jr.: The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998). https://doi.org/10.1002/(SICI)1521-3765(19980615)4:6%3c1016::AID-CHEM1016%3e3.0.CO;2-B

    Article  CAS  Google Scholar 

  38. Suvitha, A., Venkataramanan, N.S.: Trapping of organophosphorus chemical nerve agents by pillar[5]arene: A DFT, AIM, NCI and EDA analysis. J. Incl. Phenom. Macrocycl. Chem. 87, 207-218 (2017). https://doi.org/10.1007/s10847-017-0691-y

  39. Yoosefian, M., Mola, A.: Solvent effects on binding energy, stability order and hydrogen bonding of guanine-cytosine base pair. J. Mol. Liq. 209, 526–530 (2015). https://doi.org/10.1016/j.molliq.2015.06.029

    Article  CAS  Google Scholar 

  40. Suh, S.B., Kim, J.C., Choi, Y.C., Yun, S., Kim, K.S.: Nature of one-dimensional short hydrogen bonding: bond distances, bond energies, and solvent effects. J. Am. Chem. Soc. 126, 2186–2193 (2004). https://doi.org/10.1021/ja037607a

    Article  CAS  PubMed  Google Scholar 

  41. Brzezinski, B., Zundel, G.: Influence of solvents on intramolecular hydrogen bonds with large proton polarizability. J. Magn. Reson. 48, 361–366 (1982). https://doi.org/10.1016/0022-2364(82)90070-1

    Article  CAS  Google Scholar 

  42. Sin, K.-R., Ko, S.-G., Kim, C.-J., Pak, S.-H., Kim, H.-C., Kim, C.-U.: Quantum chemical investigation on interaction of 5-fluorouracil with cucurbiturils. Montash Chem. 151, 721–727 (2020). https://doi.org/10.1007/s00706-020-02599-1

    Article  CAS  Google Scholar 

  43. Ma, F., Zheng, X., Xie, J., Li, Z.: Binding properties of cucurbit[7]uril to neutral and protonated amino acids: a theoretical study. Int. J. Quantum Chem. 121, e26491 (2020). https://doi.org/10.1002/qua.26491

    Article  CAS  Google Scholar 

  44. Cheriet, M., Madi, F., Nouar, L., Lafifi, I., Himri, S., Merabet, N., Khatmi, D.: A DFT study of inclusion complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril. J. Incl. Phenom. Macrocycl. Chem. 89, 127–136 (2017). https://doi.org/10.1007/s10847-017-0738-0

    Article  CAS  Google Scholar 

  45. Venkataramanan, N.S., Suvitha, A., Kawazoe, Y.: Unraveling the binding nature of hexane with quinone functionalized pillar[5]quinone: a computational study. J. Incl. Phenom. Macrocycl. Chem. 95, 307–319 (2019). https://doi.org/10.1007/s10847-019-00945-3

    Article  CAS  Google Scholar 

  46. Bidermann, F., Nau, W.M., Schneider, H.-J.: The hydrophobic effect revisited-studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53, 11158 (2014). https://doi.org/10.1002/anie.201310958

    Article  CAS  Google Scholar 

  47. Bidermann, F., Vendruscolo, M., Scherman, O.A., De Simone, A., Nau, W.M.: Cucurbit[8]uril and blue-box: high-energy water release overwhelms electrostatic interactions. J. Am. Chem. Soc. 135, 14879 (2013). https://doi.org/10.1021/ja407951x

    Article  CAS  Google Scholar 

  48. Zhou, F., Wang, J., Yuping, Z., Wang, Q., Guo, C., Wang, F., Zhang, H.: Comparative studies on the effect of CB[8] on the charge transfer interaction. Theor. Chem. Acc. 138, 50 (2019). https://doi.org/10.1007/s00214-019-2447-9

    Article  CAS  Google Scholar 

  49. Li, L., Jia, R., Zheng, Q.-C.: What are the effects of cucurbit[n]urils on CTMS loading? Insights from QM calculations and MD simulations. Comput. Mater. Sci. 181, 109751 (2020). https://doi.org/10.1016/j.commatsci.2020.109751

    Article  CAS  Google Scholar 

  50. Hassanzadeh, K., Akhtari, K., Esmaeili, S.S., Vaziri, A., Zamani, H., Maghsoodi, M., Noori, S., Moradi, A., Hamidi, P.: Encapsulation of thiotepa and altretamine as neurotoxic anticancer drugs in cucurbit[n]uril (n=7,8) nanocapsules: a DFT study. J. Theor. Comput. Chem. 15, 1650056 (2016). https://doi.org/10.1142/S0219633616500565

    Article  CAS  Google Scholar 

  51. Bulat, F.A., Toro-Labbe, A., Brinck, T., Murray, J.S., Politzer, P.: Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16, 1679–1691 (2010). https://doi.org/10.1007/s00894-010-0692-x

    Article  CAS  PubMed  Google Scholar 

  52. Venkataramanan, N.S., Suvitha, A., Kawazoe, Y.: Density functional theory study on the dihydrogen bond cooperativity in the growth behavior of dimethyl sulfoxide clusters. J. Mol. Liq. 249, 452–462 (2018). https://doi.org/10.1016/j.molliq.2017.11.062

    Article  CAS  Google Scholar 

  53. Koch, U., Popelier, P.L.A.: Characterization of C–H–O hydrogen bonds on the basis of the charge density. J. Phys. Chem. A 99, 9747–9754 (1995). https://doi.org/10.1021/j100024a016

    Article  CAS  Google Scholar 

  54. Yahioui, K., Seridi, L., Mansouri, K.: Temozolomide binding to cucurbit[7]uril: QTAIM, NCI-RDG and NBO analyses. J. Incl. Phenom. Macrocycl. Chem. 99, 61–77 (2021). https://doi.org/10.1007/s10847-020-01027-5

    Article  CAS  Google Scholar 

  55. Rozas, I., Alkorta, I., Elguero, J.: Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc. 122, 11154–11161 (2000). https://doi.org/10.1021/ja0017864

    Article  CAS  Google Scholar 

  56. Ulloa, C.O., Ponce-Vargas, M., Munoz-Castro, A.: Nature of cucurbituril-halogen encapsulation. Structural and interaction energy consideration in the X2@CB[n] (X=Cl, Br, I, n=6, 7, 8) from relativistic DFT calculations. Phys. Chem. Chem. Phys. 20, 29325 (2018). https://doi.org/10.1039/C8CP04936J

  57. Reany, O., Li, A., Yefet, M., Gilson, M.K., Keinan, E.: Attractive interactions between heteroallenes and cucurbituril portal. J. Am. Chem. Soc. 139, 8138–8145 (2017). https://doi.org/10.1021/jacs.6b13005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the Center for Computational Materials Science, Institute for Materials Research, Tohoku University, and the supercomputer resource through the HPCI System Research Project (Project ID: hphp200040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataramanan Natarajan Sathiyamoorthy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan Sathiyamoorthy, V., Suvitha, A. & Sahara, R. Molecular insights into the complex formation between dodecamethylcucurbit[6]uril and phenylenediamine isomers. J Incl Phenom Macrocycl Chem 102, 637–651 (2022). https://doi.org/10.1007/s10847-022-01144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-022-01144-3

Keywords

Navigation