Skip to main content
Log in

Direct short-wave photolysis of chlorpyrifos-methyl and chlorpyrifos-methyl oxon in the presence of cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Direct short-wave photolysis of chlorpyrifos-methyl (1) and chlorpyrifos-methyl oxon (2) was studied in the presence of native cyclodextrins (α–, β– and γ–CD) and randomly methylated β–CD (RAMEB). We used for irradiation low pressure Hg lamps emitting at 254 nm and used as solvent 10% acetonitrile (ACN)/H2O solutions. The formation of an inclusion complex between 1 and β–CD was evaluated by UV–vis and NMR techniques. We did observe on UV–vis an interaction with β–CD, a feeble one not enough to enable the determination of the association constants. The experiments allowed us to assess that the presence of cyclodextrins produce a more rapid consumption of 1 and 2 compared to the naked molecules. A much faster photodegradation for the two compounds was observed in the presence of γ–CD. The average, at two wavelengths, of calculated ratios for the enhanced photodegradation of 1 were 1.3, 2.9, 25.8 and 2.9 for α–, β–, γ–CD and RAMEB, while in the case of 2, they reached 1.4, 3.5, 8.5 and 4.1 respectively. Our results indicate that short-wave photolysis of 1 in the presence of cyclodextrins could become a better plausible detoxification mechanism compared with their absence.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Villaverde, J., Maqueda, C., Undabeytia, T., Morillo, E.: Effect of various cyclodextrins on photodegradation of a hydrophobic herbicide in aqueous suspensions of different soil colloidal components. Chemosphere 69, 575–584 (2007). https://doi.org/10.1016/j.chemosphere.2007.03.022

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization: The Who recommended classification of pesticides by hazard and guidelines to classification 2009, https://apps.who.int/iris/handle/10665/44271

  3. Borrás, E., Tortajada-Genaro, L.A., Ródenas, M., Vera, T., Coscollá, C., Yusá, V., Muñoz, A.: Gas-phase and particulate products from the atmospheric degradation of the organothiophosphorus insecticide chlorpyrifos-methyl. Chemosphere 138, 888–894 (2015). https://doi.org/10.1016/j.chemosphere.2014.11.067

    Article  CAS  PubMed  Google Scholar 

  4. Santa Juliana, D.M., INTA: Información Sobre Insecticidas Aprobados Para Granos Almacenados, http://inta.gob.ar/sites/default/files/script-tmp-inta_informacin_sobre_insecticidas_aprobados_para_con.pdf

  5. Lobatto, V.L., Argüello, G.A., Buján, E.I.: Photolysis of chlorpyrifos-methyl, chlorpyrifos-methyl oxon, and 3,5,6-trichloro-2-pyridinol. J. Phys. Org. Chem. e3957, 1–8 (2019). https://doi.org/10.1002/poc.3957

    Article  CAS  Google Scholar 

  6. Kamiya, M., Nakamura, K.: Cyclodextrin inclusion effects on photodegradation rates of organophosphorus pesticides. Environ. Int. 21, 299–304 (1995). https://doi.org/10.1016/0160-4120(95)00026-H

    Article  CAS  Google Scholar 

  7. Cerutti, J.P., Quevedo, M.A., Buhlman, N., Longhi, M.R., Zoppi, A.: Synthesis and characterization of supramolecular systems containing nifedipine, β-cyclodextrin and aspartic acid. Carbohydr. Polym. 205, 480–487 (2019). https://doi.org/10.1016/j.carbpol.2018.10.038

    Article  CAS  PubMed  Google Scholar 

  8. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007). https://doi.org/10.1016/j.addr.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  9. Cui, Y., Wang, C., Mao, J., Yu, Y.: A facile and practical approach to randomly methylated β-cyclodextrin. J. Chem. Technol. Biotechnol. 85, 248–251 (2010). https://doi.org/10.1002/jctb.2295

    Article  CAS  Google Scholar 

  10. Camara de Lucas, N., Netto-Ferreira, J.C.: Effect of β-cyclodextrin complexation on the photochemistry of α-phenoxyacetophenone. J. Photochem. Photobiol. A 103, 137–141 (1997). https://doi.org/10.1016/S1010-6030(97)85301-4

    Article  Google Scholar 

  11. Ramamurthy, V., Mondal, B.: Supramolecular photochemistry concepts highlighted with select examples. J. Photochem. Photobiol. C 23, 68–102 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.04.002

    Article  CAS  Google Scholar 

  12. Muñoz, A., Vera, T., Sidebottom, H., Mellouki, A., Borrás, E., Ródenas, M., Clemente, E., Vázquez, M.: Studies on the atmospheric degradation of chlorpyrifos-methyl. Environ. Sci. Technol. 45, 1880–1886 (2011). https://doi.org/10.1021/es103572j

    Article  CAS  PubMed  Google Scholar 

  13. Hodek, O., Jans, U., Yang, L., Křížek, T.: Chlorpyrifos-methyl oxon hydrolysis and its monitoring by HPLC–MS/MS. Monatshefte für Chemie 149, 1515–1519 (2018). https://doi.org/10.1007/s00706-018-2219-6

    Article  CAS  Google Scholar 

  14. Vico, R.V., de Rossi, R.H., Buján, E.I.: Reactivity of the insecticide chlorpyrifos-methyl toward hydroxyl and perhydroxyl ion. Effect of cyclodextrins. J. Phys. Org. Chem. 22, 691–702 (2009). https://doi.org/10.1002/poc.1502

    Article  CAS  Google Scholar 

  15. Nieto, L.M., Hodaifa, G., Casanova, M.S.: Elimination of pesticide residues from virgin olive oil by ultraviolet light: preliminary results. J. Hazard. Mater. 168, 555–559 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.030

    Article  CAS  PubMed  Google Scholar 

  16. Zeng, Q., Liao, B., Luo, Y., Liu, C., Tang, H.: Inclusion effects of highly water-soluble cyclodextrins on the solubility, photodegradation, and acute toxicity of methyl parathion. Bull. Environ. Contam. Toxicol. 71, 668–674 (2003). https://doi.org/10.1007/s00128-003-0185-z

    Article  CAS  PubMed  Google Scholar 

  17. Hanna, K., de Brauer, C., Germain, P., Chovelon, J.M., Ferronato, C.: Degradation of pentachlorophenol in cyclodextrin extraction effluent using a photocatalytic process. Sci. Total Environ. 332, 51–60 (2004). https://doi.org/10.1016/j.scitotenv.2004.04.022

    Article  CAS  PubMed  Google Scholar 

  18. Orgoványi, J., H.-Otta, K., Pöppl, L., Fenycesi, É., Záray, G: Spectrophotometric and thermoanalytical study of cypermethrin/cyclodextrin complexes. Microchem. J. 79, 77–82 (2005). https://doi.org/10.1016/j.microc.2004.10.022

    Article  CAS  Google Scholar 

  19. Yáñez, C., Cañete-Rosales, P., Castillo, J.P., Catalán, N., Undabeytia, T., Morillo, E.: Cyclodextrin inclusion complex to improve physicochemical properties of herbicide bentazon: exploring better formulations. PLoS ONE 7, e41072 (2012). https://doi.org/10.1371/journal.pone.0041072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneider, H.-J., Hacket, F., Rüdiger, V., Ikeda, H., Ru, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1786 (1998). https://doi.org/10.1021/cr970019t

    Article  CAS  PubMed  Google Scholar 

  21. Bogdan, M., Caira, M.R., Farcas, S.I.: Inclusion of the niflumic acid anion in β-cyclodextrin: a solution NMR and X-ray structural investigation. Supramol. Chem. 14, 427–435 (2002). https://doi.org/10.1080/1061027021000002431

    Article  CAS  Google Scholar 

  22. Poh, B.L., Saenger, W.: 13P NMR study of the inclusion of organophosphorus molecules in cyclodextrins. Spectrochim. Acta A 39, 305–307 (1983). https://doi.org/10.1016/0584-8539(83)80002-6

    Article  Google Scholar 

  23. García-Río, L., Hervés, P., Leis, J.R., Mejuto, J.C., Pérez-Juste, J., Rodríguez-Dafonte, P.: Evidence for complexes of different stoichiometries between organic solvents and cyclodextrins. Org. Biomol. Chem. 4, 1038–1048 (2006). https://doi.org/10.1039/b513214b

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported in part by Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET) under Grant Number PIP 112-21501-00242 CO and Universidad Nacional de Córdoba, Argentina under Grant Number 366/2016 and 113/17.

Author information

Authors and Affiliations

Authors

Contributions

VLL: Performed the experiments; Analyzed and interpret the data; Wrote the paper. GAA, EIB: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Corresponding author

Correspondence to Virginia L. Lobatto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobatto, V.L., Argüello, G.A. & Buján, E.I. Direct short-wave photolysis of chlorpyrifos-methyl and chlorpyrifos-methyl oxon in the presence of cyclodextrins. J Incl Phenom Macrocycl Chem 99, 227–234 (2021). https://doi.org/10.1007/s10847-021-01046-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01046-w

Keywords

Navigation