Skip to main content
Log in

The apparent formation constants of asiatic acid and its derivatives existing in Centella asiatica with cyclodextrins by HPLC

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The retention of triterpenoids in the C18 column and apparent formation constants of triterpenoids with cyclodextrins (CDs) were studied using HPLC. As the effective mobile phase additives, CDs can improve the separation of triterpenoid glycosides (asiaticoside B, madecassoside and asiaticoside) and reduce the retention of triterpenoids, and it is attributed to that triterpenoids forms a 1:1 inclusion complexes with CDs. The apparent formation constants of these complexes depend on the structure of triterpenoids, as well as on the substituent group and the hydrophobic cavity size of CDs. Triterpenoid glycosides had less apparent formation constants with HP-β-CD and Glu-β-CD, which might be related that hydroxypropyl group and glucose group in the structure of HP-β-CD and Glu-β-CD were unfaver to formation of the inclusion complexes. Asiaticoside B had larger apparent formation constants with CDs than madecassoside and asiaticoside. Larger apparent association constants of triterpenoid acids (madecassic acid and asiatic acid) were obtained with γ-CD than β-CD and its derivatives, which are related that triterpenoid acids fit well into the γ-CD cavity, and form relatively stable inclusion complexes. The ∆G (25 °C), ∆H and ∆S reveal that the inclusion processes between triterpenoids and CDs were not spontaneous, exothermic, and enthalpically driven. In addition, the usefulness of CDs for simultaneous analysis of five triterpenoids in HPLC and drug delivery vehicles was described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jin, S.G., Kim, K.S., Yousaf, A.M., Kim, D.W., Jang, S.W., Son, M.W., Kim, Y.H., Yong, C.S., Kim, J.O., Choi, H.G.: Mechanical properties and in vivo healing evaluation of a novel Centella asiatica-loaded hydrocolloid wound dressing. Int. J. Pharm. 490, 240–247 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. Somboonwong, J., Kankaisre, M., Tantisira, B., Tantisira, M.H.: Wound healing activities of different extracts of Centella asiaticain incision and burn wound models: an experimental animal study. BMC Complement. Altern. Med. 12(4), 103 (2012)

    PubMed  PubMed Central  Google Scholar 

  3. Visweswari, G., Prasad, K.S., Chetan, P.S., Lokanatha, V., Rajendra, W.: Evaluation of the anticonvulsant effect of Centella asiatica (gotu kola) in pentylenetetrazol-induced seizures with respect to cholinergic neurotransmission. Epilepsy Behav. 17, 332–335 (2010)

    Article  PubMed  Google Scholar 

  4. Kabir, A.U., Samad, M.B., D’Costa, N.M., Akhter, F., Ahmed, A., Hannan, J.M.A.: Anti-hyperglycemic activity of Centella asiatica is partly mediated by carbohydrase inhibition and glucose-fiber binding. BMC Complement. Altern. Med. 12(4), 103 (2012)

    Google Scholar 

  5. Hawas, A.A., Nugrahaningsih, D.A.A., Sholikhah, E.N., Syarifuddin, S., Wijayaningsih, R.A.: Anti-inflammatory effect of Centella asiatica extract on prevented aortic intima-media thickening in diabetic rats. Thai J. Pharm. Sci. 42(2), 51–57 (2018)

    CAS  Google Scholar 

  6. Razali, N.N.M., Ng, C.T., Fong, L.Y.: Cardiovascular protective effects of Centella asiatica and its triterpenes: a review. Planta Med. 85, 1203–1215 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. Bonte, F., Dumas, M., Chaudagne, C., Meybeck, A.: Influence of asiatic acid, madecassic acid and asiaticoside on human collagen I synthesis. Planta med. 60(2), 133–135 (1994)

    Article  CAS  PubMed  Google Scholar 

  8. Dorni, A.I.C., Peter, G., Jude, S., Arundhathy, C.A., Jacob, J., Amalraj, A., Pius, A., Gopi, S.: UHPLC–Q-ToF-MS-guided enrichment and purification of triterpenoids from Centella asiatica (L.) extract with macroporous resin. J. Liq. Chromatogr. R. T. 40(1), 13–25 (2017)

    Article  Google Scholar 

  9. Chao, P.C., Lee, H.L., Yin, M.C.: Asiatic acid attenuated apoptotic and inflammatory stress in the striatum of MPTP-treated mice. Food Funct. 7, 1999–2005 (2016)

    CAS  PubMed  Google Scholar 

  10. Jiang, W., Li, M., He, F., Bian, Z., He, Q., Wang, X., Yao, W., Zhu, L.: Neuroprotective effect of asiatic acid against spinal cord injury in rats. Life Sci. 157, 45–51 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Lu, C.W., Lin, T.Y., Wang, S.J., Huang, S.K.: Asiatic acid, an active substance of Centella asiatica, presynaptically depresses glutamate release in the rat hippocampus. Eur. J. Pharmacol. 865, 172781 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. Kim, S.R., Koo, K.A., Lee, M.K., Park, H.G., Jew, S.S., Cha, K.H., Kim, Y.C.: Asiatic acid derivatives enhance cognitive performance partly by improving acetylcholine synthesis. J. Pharm. Pharmacol. 56(10), 1275–1282 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Rosen, H., Blumenthal, A., McCallum, J.: Effect of asiaticoside on wound healing in the rat. Proc Soc Exp Biol Med. 125(1), 279–280 (1967)

    Article  CAS  PubMed  Google Scholar 

  14. Sh Ahmed, A., Taher, M., Mandal, U.K., Jaffri, J.M., Susanti, D., Mahmood, S., Zakaria, Z.A.: Pharmacological properties of Centella asiatica hydrogel in accelerating wound healing in rabbits. BMC Complement. Altern. Med. 19(1), 213 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lu, X., Zeng, R., Lin, J., Hu, J., Rong, Z., Xu, W., Liu, Z., Zeng, W.: Pharmacological basis for use of madecassoside in gouty arthritis: anti-inflammatory, anti-hyperuricemic, and NLRP3 inhibition. Immunopharmacol. Immunotoxicol. 41(2), 277–284 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Thi, T.D., Nauwelaerts, K., Froeyen, M., Baudemprez, L., Van Speybroeck, M., Augustijns, P., Annaert, P., Martens, J., Van Humbeeck, J., Van den Mooter, G.: Comparison of the complexation between methylprednisolone and different cyclodextrins in solution by 1H-NMR and molecular modeling studies. J. Pharm. Sci. 99(9), 3863–3873 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Caira, M.R., Bourne, S.A., Samsodien, H., Smith, V.J.: Inclusion complexes of 2-methoxyestradiol with dimethylated and permethylated β-cyclodextrins: models for cyclodextrin-steroid interaction. Beilstein J. Org. Chem. 11, 2616–2630 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahmed, S.M.: Effect of cyclodextrins on the chemical stability of ST1435, a contraceptive steroid progestin, in aqueous solution. J. Incl. Phenom. Mol. Recognit. Chem. 27(1), 85–96 (1997)

    Article  CAS  Google Scholar 

  19. Miro, A., d’Angelo, I., Nappi, A., La Manna, P., Biondi, M., Mayol, L., Musto, P., Russo, R., Rotonda, M.I.L., Ungaro, F., Quaglia, F.: Engineering poly(ethylene oxide) buccal films with cyclodextrin: a novel role for an old excipient. Int. J. Pharm. 452, 283–291 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. Másson, M., Sigfússon, S.D., Loftsson, T.: Fish skin as a model membrane to study transmembrane drug delivery with cyclodextrins. J. Incl. Phenom. Macro. 44, 177–182 (2002)

    Google Scholar 

  21. Qiu, H., Liang, X., Sun, M., Jiang, S.: Development of silica-based stationary phases for high-performance liquid chromatography. Anal. Bioanal. Chem. 399, 3307–3322 (2011)

    CAS  PubMed  Google Scholar 

  22. Wang, C.H., Liu, H.J., Zhang, B.H., Guo, H.Y.: Determination of oleanolic and ursolic acid in Chinese herbs using HPLC and cyclodextrins as mobile phase modifiers. J. Sep. Sci. 34, 3023–3028 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. Wistuba, D., Schurig, V.: Cyclodextrin-mediated enantioseparations by capillary electrochromatography. Methods Mol. Biol. 970, 505–523 (2013)

    CAS  PubMed  Google Scholar 

  24. Zeng, A.G., Xing, J.F., Wang, C.H., Song, J., Li, C., Yang, X., Yang, G.D.: Simultaneous analysis and retention behavior of major isoflavonoids in Radix Puerariae lobatae and Radix Puerariae thomsonii by high performance liquid chromatography with cyclodextrins as a mobile phase modifier. Anal. Chim. Acta 712, 145–151 (2012)

    CAS  PubMed  Google Scholar 

  25. Feng, B.L., Jin, J.Q., Wang, C.H., Song, J., Yang, G.D., Zeng, A.G.: Analysis and retention behavior of isoflavone glycosides and aglycones in Radix Astragali by high performance liquid chromatography with hydroxypropyl-β-cyclodextrin as a mobile phase additive. J. Sep. Sci. 35(24), 3469–3476 (2012)

    CAS  PubMed  Google Scholar 

  26. Nikolic, I.L., Savic, I.M., Popsavin, M.M., Rakic, S.J., Mihajilov-Krstev, T.M., Ristic, I.S., Eric, S.P., Savić-Gajic, I.M.: Preparation, characterization and antimicrobial activity of inclusion complex of biochanin A with (2-hydroxypropyl)-β-cyclodextrin. J. Pharm. Pharmacol. 70, 1485–1493 (2018)

    CAS  PubMed  Google Scholar 

  27. Braga, M.A., Martini, M.F., Pickholz, M., Yokaichiya, F., Franco, M.K., Cabeça, L.F., Guilherme, V.A., Silva, C.M., Limia, C.E., de Paula, E.: Clonidine complexation with hydroxypropyl-beta-cyclodextrin: from physico-chemical characterization to in vivo adjuvant effect in local anesthesia. J. Pharm. Biomed. Anal. 119, 27–36 (2016)

    CAS  PubMed  Google Scholar 

  28. Holm, R., Hartvig, R.A., Nicolajsen, H.V., Westh, P., Østergaard, J.: Characterization of the complexation of tauro- and glyco-conjugated bile salts with γ-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin using affinity capillary electrophoresis. J. Incl. Phenom. Macrocycl. Chem. 61, 161–169 (2008)

    CAS  Google Scholar 

  29. Pan, J., Kai, G.Q., Yuan, C.X., Jin, R.S.: Separation and determination of the structural isomers of madecassoside by HPLC Using β-Cyclodextrin as mobile phase additive. Chromatographia 66, 121–123 (2007)

    CAS  Google Scholar 

  30. Momose, T., Hirata, H., Iida, T., Goto, J., Nambara, T.: Simultaneous analysis and retention behavior of the glucuronide, glucoside, and N-acetylglucosaminide conjugates of bile acids in conventional and inclusion high-performance liquid chromatographic methods. J. Chromatogr. A 803, 121–129 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yang, R., Zhang, B. et al. The apparent formation constants of asiatic acid and its derivatives existing in Centella asiatica with cyclodextrins by HPLC. J Incl Phenom Macrocycl Chem 98, 261–270 (2020). https://doi.org/10.1007/s10847-020-01026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01026-6

Keywords

Navigation