Skip to main content
Log in

Metalloporphyrin supported on hyper cross-linked polymer: green protocol for reduction of nitroarenes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the current study, a Pd–porphyrin catalyst was anchored covalently onto functionalized polymeric spine based on a calix[4]resorcinarene. The achieved catalytic system was characterized, and its catalytic activity was investigated in the reduction of nitroarenes. The main advantages of the present work are: using water as green solvent, catalyst reusability, easy refinement of the products, excellent yields, and relatively short reaction times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Zhang, K., Suh, J.M., Choi, J.-W., Jang, H.W., Shokouhimehr, M., Varma, R.S.: Recent advances in the nanocatalyst-assisted NaBH4 reduction of nitroaromatics in water. ACS Omega 4, 483–495 (2019)

    Article  CAS  Google Scholar 

  2. Goswami, A., Rathi, A.K., Aparicio, C., Tomanec, O., Petr, M., Pocklanova, R., Gawande, M.B., Varma, R.S., Zboril, R.: In situ generation of Pd–Pt core–shell nanoparticles on reduced graphene oxide (Pd@Pt/rGO) using microwaves: applications in dehalogenation reactions and reduction of olefins. ACS Appl. Mater. Interfaces 9, 2815–2824 (2017)

    Article  CAS  Google Scholar 

  3. Ghosh Chaudhuri, R., Paria, S.: Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)

    Article  CAS  Google Scholar 

  4. Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., Rosa, J., Baptista, P.V.: Noble metal nanoparticles for biosensing applications. Sensors 12, 1657–1687 (2012)

    Article  CAS  Google Scholar 

  5. Goldberg, I.: Metalloporphyrin molecular sieves. Chem. Eur. J. 6, 3863–3870 (2000)

    Article  CAS  Google Scholar 

  6. Barona-Castaño, J.C., Carmona-Vargas, C.C., Brocksom, T.J., De Oliveira, K.T.: Porphyrins as catalysts in scalable organic reactions. Molecules 21, 310 (2016)

    Article  Google Scholar 

  7. Betoni Momo, P., Pavani, C., Baptista, M.S., Brocksom, T.J., Thiago de Oliveira, K.: Chemical transformations and photophysical properties of meso-tetrathienyl-substituted porphyrin derivatives. Eur. J. Org. Chem. 2014, 4536–4547 (2014)

    Article  CAS  Google Scholar 

  8. Carvalho, C.M.B., Fujita, M.A., Brocksom, T.J., de Oliveira, K.T.: Synthesis and photophysical evaluations of β-fused uracil-porphyrin derivatives. Tetrahedron 69, 9986–9993 (2013)

    Article  CAS  Google Scholar 

  9. Cornils, B., Herrmann, W.A.: Concepts in homogeneous catalysis: the industrial view. J. Catal. 216, 23–31 (2003)

    CAS  Google Scholar 

  10. Dioos, B.M., Vankelecom, I.F., Jacobs, P.A.: Aspects of immobilisation of catalysts on polymeric supports. Adv. Synth. Catal. 348, 1413–1446 (2006)

    Article  CAS  Google Scholar 

  11. Wan, Q.-X., Liu, Y.: The ionic palladium porphyrin as a highly efficient and recyclable catalyst for Heck reaction in ionic liquid solution under aerobic conditions. Catal. Lett. 128, 487–492 (2009)

    Article  CAS  Google Scholar 

  12. Dinari, M., Mohammadnezhad, G., Nabiyan, A.: Preparation and characterization of nanocomposite materials based on polyamide-6 and modified ordered mesoporous silica KIT-6. J. Appl. Polym. 133, 43098 (2016)

    Article  Google Scholar 

  13. Totten, R.K., Kim, Y.-S., Weston, M.H., Farha, O.K., Hupp, J.T., Nguyen, S.T.: Enhanced catalytic activity through the tuning of micropore environment and supercritical CO2 processing: Al (Porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant. J. Am. Chem. Soc. 135, 11720–11723 (2013)

    Article  CAS  Google Scholar 

  14. Mouradzadegun, A., Kiasat, A.R., Fard, P.K.: 3D-network porous polymer based on calix[4]resorcinarenes as an efficient phase transfer catalyst in regioselective conversion of epoxides to azidohydrins. Catal. Commun. 29, 1–5 (2012)

    Article  CAS  Google Scholar 

  15. Mouradzadegun, A., Elahi, S., Abadast, F.: One-pot synthesis of tweezer-like calix[4]resorcinarene decorated with pendant heterocyclic moieties: an efficient and recyclable heterogeneous PTC for the preparation of azidohydrins in water. Catal. Lett. 144, 1636–1641 (2014)

    Article  CAS  Google Scholar 

  16. Mouradzadegun, A., Abadast, F.: An improved organic/inorganic solid receptor for colorimetric cyanide-chemosensing in water: towards new mechanism aspects, simplistic use and portability. Chem. Commun. 50, 15983–15986 (2014)

    Article  CAS  Google Scholar 

  17. Mouradzadegun, A., Mostafavi, M.A.: Copper-loaded hypercrosslinked polymer decorated with pendant amine groups: a green and retrievable catalytic system for quick [3+ 2] Huisgen cycloaddition in water. RSC Adv. 6, 42522–42531 (2016)

    Article  CAS  Google Scholar 

  18. Mouradzadegun, A., Dianat, S.: Facile and selective solvent-free synthesis of 2-isoxazolines under microwave irradiation. J. Heterocycl. Chem. 46, 778–781 (2009)

    Article  CAS  Google Scholar 

  19. Mouradzadegun, A., Gheitasvand, N.: Efficient reduction of thiopyrylium salts to corresponding 2H-and 4H-thiopyrans under solvent-free condition: regioselectivity and mechanism. Phosphorus Sulfur Silicon Relat. Elem. 180, 1385–1388 (2005)

    Article  CAS  Google Scholar 

  20. Mouradzadegun, A., Mostafavi, M.A.: Design and synthesis of a new porous organic polymer equipped with N-propyl sulfamic acid functionalities: As an efficient heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthene derivatives. Polym. Eng. Sci. 58, 1362–1370 (2018)

    CAS  Google Scholar 

  21. Mouradzadegun, A., Elahi, S., Abadast, F.: Synthesis of a 3D-network polymer supported Bronsted acid ionic liquid based on calix[4]resorcinarene via two post-functionalization steps: a highly efficient and recyclable acid catalyst for the preparation of symmetrical bisamides. RSC Adv. 4, 31239–31248 (2014)

    CAS  Google Scholar 

  22. Tunstad, L.M., Tucker, J.A., Dalcanale, E., Weiser, J., Bryant, J.A., Sherman, J.C., Helgeson, R.C., Knobler, C.B., Cram, D.J.: Host-guest complexation. 48. Octol building blocks for cavitands and carcerands. J. Org. Chem. 54, 1305–1312 (1989)

    CAS  Google Scholar 

  23. Guo, D.-S., Liu, Y.: Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 41, 5907–5921 (2012)

    CAS  PubMed  Google Scholar 

  24. Altshuler, H., Ostapova, E., Fedyaeva, O., Sapozhnikova, L., Altshuler, O.: Novel Network Polymers Based on Calixresorcinarenes, Macromolecular Symposia, pp. 1–4. Wiley Online Library, Hoboken (2002)

    Google Scholar 

  25. Jeong, E.-Y., Burri, A., Lee, S.-Y., Park, S.-E.: Synthesis and catalytic behavior of tetrakis (4-carboxyphenyl) porphyrin-periodic mesoporous organosilica. J. Mater. Chem. 20, 10869–10875 (2010)

    CAS  Google Scholar 

  26. Amao, Y., Asai, K., Okura, I.: Novel optical oxygen sensing by phosphorescence quenching of palladium porphyrin self-assembled film on alumina plate. J. Porphyr. Phthalocyanines 4, 179–184 (2000)

    CAS  Google Scholar 

  27. Fareghi-Alamdari, R., Golestanzadeh, M., Bagheri, O.: meso-Tetrakis [4-(methoxycarbonyl)phenyl] porphyrinatopalladium(II) supported on graphene oxide nanosheets (Pd(II)-TMCPP-GO): synthesis and catalytic activity. RSC Adv. 6, 108755–108767 (2016)

    CAS  Google Scholar 

  28. Prendergast, K., Spiro, T.G.: Core expansion, ruffling, and doming effects on metalloporphyrin vibrational frequencies. J. Am. Chem. Soc. 114, 3793–3801 (1992)

    Article  CAS  Google Scholar 

  29. Li, N., Wang, Z., Zhao, K., Shi, Z., Xu, S., Gu, Z.: Graphene-Pd composite as highly active catalyst for the Suzuki-Miyaura coupling reaction. J. Nanosci. Nanotechnol. 10, 6748–6751 (2010)

    Article  CAS  Google Scholar 

  30. Huang, H., Wang, X., Li, X., Chen, C., Zou, X., Ding, W., Lu, X.: Highly chemoselective reduction of nitroarenes over non-noble metal nickel-molybdenum oxide catalysts. Green Chem. 19, 809–815 (2017)

    Article  CAS  Google Scholar 

  31. Zhang, H.-Y., Feng, C., Shang, N.-Z., Gao, S.-T., Wang, C., Wang, Z.: Efficient reduction of nitroarenes catalyzed by graphene-based magnetic nanocomposite. Lett. Org. Chem. 10, 17–21 (2013)

    CAS  Google Scholar 

  32. Dell’Anna, M.M., Intini, S., Romanazzi, G., Rizzuti, A., Leonelli, C., Piccinni, F., Mastrorilli, P.: Polymer supported palladium nanocrystals as efficient and recyclable catalyst for the reduction of nitroarenes to anilines under mild conditions in water. J. Mol. Catal. A 395, 307–314 (2014)

    Article  Google Scholar 

  33. Nandi, D., Siwal, S., Choudhary, M., Mallick, K.: Carbon nitride supported palladium nanoparticles: an active system for the reduction of aromatic nitro-compounds. Appl. Catal. A 523, 31–38 (2016)

    Article  CAS  Google Scholar 

  34. Genc, H.: Efficient reductions of various nitroarenes with scrap automobile catalyst and NaBH4. Catal. Commun. 67, 64–67 (2015)

    Article  CAS  Google Scholar 

  35. Vernekar, A.A., Patil, S., Bhat, C., Tilve, S.G.: Magnetically recoverable catalytic Co–Co2B nanocomposites for the chemoselective reduction of aromatic nitro compounds. RSC Adv. 3, 13243–13250 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council at the University of Shahid Chamran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Mouradzadegun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 970 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, S., Mouradzadegun, A. Metalloporphyrin supported on hyper cross-linked polymer: green protocol for reduction of nitroarenes. J Incl Phenom Macrocycl Chem 98, 213–221 (2020). https://doi.org/10.1007/s10847-020-01021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01021-x

Keywords

Navigation