Skip to main content
Log in

Complementary host behaviour of trans-cyclohexane-1,4-diamine derivatives during recrystallization processes from mixed anilines

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

trans-N,N′-Bis(9-phenyl-9-xanthenyl)cyclohexane-1,4-diamine (1,4-DAX) and trans-N,N′-bis(9-phenyl-9-thioxanthenyl)cyclohexane-1,4-diamine (1,4-DAT) proved to be highly effective host compounds for the enclathration of aniline (ANI), N-methylaniline (NMA) and N,N-dimethylaniline (DMA) guest solvents: only DMA was not included and only when using 1,4-DAT. When the host compounds were recrystallized from mixtures of these guests, it was revealed that host selectivities were in the order NMA > ANI > DMA and NMA > DMA > ANI for 1,4-DAX and 1,4-DAT, respectively. Single crystal diffraction experiments were employed to identify the host⋯guest interactions responsible for guest retention in these complexes, while thermal analyses proved futile for the determination of their relative thermal stabilities since most of them displayed poor stability even at room temperature. The selectivity data presented here complement the results obtained when the host compounds employed were 1,2-DAX and 1,2-DAT, as per a previous submission, where DMA was significantly preferred. Since NMA and DMA may be prepared from ANI, the resultant products often have one or more of these anilines present as impurities. This work therefore demonstrates that by utilizing the appropriate host compound, these solvents may be purified through host‒guest chemistry principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atwood, J.L., Suslick, K.S., Lehn, J.-M.: Comprehensive Supramolecular Chemistry: Supramolecular Reactivity and Transport: Bioinorganic Systems. Elsevier, The Netherlands (1996)

    Google Scholar 

  2. Atwood, J.L., Steed, J.W.: Encyclopedia of Supramolecular Chemistry. CRC Press, New York (2004)

    Book  Google Scholar 

  3. Steed, J.W., Atwood, J.L.: Supramolecular Chemistry. Wiley, USA (2009)

    Book  Google Scholar 

  4. Liu, X., Xu, D., Liao, C., Fang, Y., Guo, B.: Development of a promising drug delivery for formononetin: Cyclodextrin-modified single-walled carbon nanotubes. J. Drug Deliv. Sci. Technol. 43, 461–468 (2018)

    Article  CAS  Google Scholar 

  5. Abou-Okeil, A., Rehan, M., El-Sawy, S.M., El-Bisi, M.K., Ahmed-Farid, O.A., Abdel-Mohdy, F.A.: Lidocaine/β-cyclodextrin inclusion complex as drug delivery system. Eur. Polym. J. 108, 304–310 (2018)

    Article  CAS  Google Scholar 

  6. Davis, F., Higson, P.J., Macrocycles, S.: Construction, Chemistry and Nanotechnology Applications, pp. 34–76. Wiley, USA (2011)

    Google Scholar 

  7. Kimura, E.: Evolution of macrocyclic polyamines from molecular science to supramolecular science. Bull. Jpn. Soc. Coordin. Chem. 59, 26–47 (2012)

    Article  Google Scholar 

  8. Xue, Y., Guan, Y., Zheng, A., Xiao, H.: Amphoteric calix[8]arene-based complex for pH-triggered drug delivery. Colloid Surface B 101, 55–60 (2013)

    Article  CAS  Google Scholar 

  9. Jana, S., Suryavanshi, K.K., Maiti, S., Jana, S.: Polysaccharide Carriers for Drug Delivery, pp. 477–495. Woodhead Publishing, Cambridge (2019)

    Book  Google Scholar 

  10. Alexandratos, S.D., Natesan, S.: Coordination chemistry of phosphorylated calixarenes and their application to separations science. Ind. Eng. Chem. Res. 39, 3998–4010 (2000)

    Article  CAS  Google Scholar 

  11. Das, D., Assaf, K.I., Nau, W.M.: Applications of cucurbiturils in medicinal chemistry and chemical biology. Front. Chem. 7, 619–619 (2019)

    Article  CAS  Google Scholar 

  12. Danylyuk, O.: Host-guest complexes of cucurbit[6]uril with phenethylamine-type stimulants. CrystEngComm 20, 7642–7647 (2018)

    Article  CAS  Google Scholar 

  13. Cao, L., Šekutor, M., Zavalij, P., Majerski, K., Glaser, R., Isaacs, L.: Cucurbit[7]uril⋅guest pair with an attomolar dissociation constant. Angew. Chem. Int. Ed. 53, 988–993 (2014)

    Article  CAS  Google Scholar 

  14. Xue, M., Yang, Y., Chi, X., Zhang, Z., Huang, F.: Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012)

    Article  CAS  Google Scholar 

  15. Li, H., Yang, Y., Xu, F., Liang, T., Wen, H., Tian, W.: Pillararene-based supramolecular polymers. Chem. Commun. 55, 271–285 (2019)

    Article  CAS  Google Scholar 

  16. Zhou, Y., Jie, K., Zhao, R., Huang, F.: Cis-Trans selectivity of haloalkene isomers in nonporous adaptive pillararene crystals. J. Am. Chem. Soc. 141, 11847–11851 (2019)

    Article  CAS  Google Scholar 

  17. Toda, F., Akagi, K.: Molecular complexes of acetylene alcohols with n- and χ-donors. Tetrahedron Lett. 9, 3695–3698 (1968)

    Article  Google Scholar 

  18. Soldatov, D.V.: Soft organic and metal-organic frameworks with porous architecture: from wheel-and-axle to ladder-and-platform design of host molecules. J. Chem. Crystallogr. 36, 747–768 (2006)

    Article  CAS  Google Scholar 

  19. Weber, E., Skobridis, K., Wierig, A., Nassimbeni, L.R., Johnson, L.: Complexation with diol host compounds. Part 10. Synthesis and solid state inclusion properties of bis(diarylhydroxymethyl)-substituted benzenes and biphenyls; X-ray crystal structures of two host polymorphs and of a non-functional host analogue. J. Chem. Soc. Perkin Trans. 2, 2123–2130 (1992)

    Article  Google Scholar 

  20. Katzsch, F., Weber, E.: Crystalline inclusion properties of new pyridine and thiophene modified wheel-and-axle diol hosts. CrystEngComm 17, 2737–2753 (2015)

    Article  CAS  Google Scholar 

  21. Toda, F., Tanaka, K., Mak, T.C.W.: Structure of a 1:1 molecular complex of trans-9,10-dihydroxy-9,10-diphenyl-9,10-dihydroanthracene with ethanol. Tetrahedron Lett. 25, 1359–1362 (1984)

    Article  CAS  Google Scholar 

  22. Toda, F., Tanaka, K., Nagamatsu, S., Mak, T.C.W.: X-Ray Analysis of trans-9,10-Dihydroxy-9,10-diphenyl-9,10-dihydroanthracene and Its 1:2 molecular complex with methanol, and structural comparison with the related 1:1 ethanol and 1:1 1,4-butanediol adducts. Isr. J. Chem. 25, 346–352 (1985)

    Article  CAS  Google Scholar 

  23. Ji, B., Miao, S., Deng, D.: Molecular recognition and supramolecular self-assemblies of (±)-2,2′-dihydroxy-1,1′-binaphthyl with aromatic aza compounds. Struct. Chem. 19, 265–268 (2008)

    Article  CAS  Google Scholar 

  24. Ji, B., Deng, D., Wang, W.-Z., Miao, S.-B.: Hydrogen bond-directed co-crystals of (±)-1,1′-binaphthalene-2,2′-diol with aromatic diimines: Structures and selectivity. J. Mol. Struct. 937, 107–115 (2009)

    Article  CAS  Google Scholar 

  25. Seebach, D., Beck, A.K., Heckel, A.: TADDOLs, their derivatives, and TADDOL analogues: versatile chiral auxiliaries. Angew. Chem. Int. Ed. 40, 92–138 (2001)

    Article  CAS  Google Scholar 

  26. Barton, B., Hosten, E.C., Jooste, D.V.: Comparative investigation of the inclusion preferences of optically pure versus racemic TADDOL hosts for pyridine and isomeric methylpyridine guests. Tetrahedron 73, 2662–2673 (2017)

    Article  CAS  Google Scholar 

  27. Barton, B., Jooste, D.V., Hosten, E.C.: trans-N,N′-Bis(9-phenyl-9-xanthenyl)cyclohexane-1,2-diamine and its thioxanthenyl derivative as potential host compounds for the separation of anilines through host‒guest chemistry principles, submitted to J. Incl. Phenom. Macrocycl. Chem. (2020)

  28. Narayanan, S., Deshpande, K.: Aniline alkylation over solid acid catalysts. Appl. Catal. A. 199, 1–31 (2000)

    Article  CAS  Google Scholar 

  29. Bruker, A.X.S.: APEX2 SADABS and SAINT. Bruker A.X.S., Madison (2010)

    Google Scholar 

  30. Sheldrick, G.M.: SHELXT-integrated space-group and crystal structure determination. Acta Crystallogr. A 71, 3 (2015)

    Article  Google Scholar 

  31. Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3 (2015)

    Article  Google Scholar 

  32. Hübschle, C.B., Sheldrick, G.M., Dittrich, B.: ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281 (2011)

    Article  Google Scholar 

  33. Mercury 4.3.1 (Build 273970), https://www.ccdc.cam.ac.uk/mercury/ (2020). Accessed 2020

  34. Barton, B., Jooste, D.V., Hosten, E.C.: Synthesis and assessment of compounds trans-N, N'-bis(9-phenyl-9-xanthenyl)cyclohexane-1,4-diamine and trans-N, N'-bis(9-phenyl-9-thioxanthenyl)cyclohexane-1,4-diamine as hosts for potential xylene and ethylbenzene guests. J. Incl. Phenom. Macrocycl. Chem. 93, 333–346 (2019)

    Article  CAS  Google Scholar 

  35. Sykes, N.M., Su, H., Weber, E., Bourne, S.A., Nassimbeni, L.R.: Selective enclathration of methyl- and dimethylpiperidines by fluorenol hosts. Cryst. Growth Des. 17, 819–826 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support is acknowledged from the Nelson Mandela University and the National Research Foundation (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benita Barton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10847_2020_998_MOESM1_ESM.docx

Supplementary file Crystallographic data for the novel complexes were deposited at the Cambridge Crystallographic Data Centre, where SCXRD analyses were possible {CCDC- 1987923 (1,4-DAX•DMA), 1987924 [1,4-DAT•2(ANI)] and 1987925 (1,4-DAT•NMA)}. These data may be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Overlaid thermal traces (DSC, TG and DTG) of each of the complexes of 1,4-DAX and 1,4-DAT are provided in Figures 1Sa‒c and 2Sa and b, respectively. (DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, B., Jooste, D.V. & Hosten, E.C. Complementary host behaviour of trans-cyclohexane-1,4-diamine derivatives during recrystallization processes from mixed anilines. J Incl Phenom Macrocycl Chem 99, 33–42 (2021). https://doi.org/10.1007/s10847-020-00998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-00998-9

Keywords

Navigation