Skip to main content
Log in

Synthesis, characterization and biological analysis of transition metal complexes with macro cyclic ligands derived from adipic acid, ethylenediamine with diethyloxalate and diethylmalonate

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Macro-cyclic ligands from adipic acid, ethylenediamine with diethyloxalate and diethylmalonate and their respective metal complexes of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) with macro cyclic ligands (LO) and (LM) L [N,N′-bis(2-aminoethyl)hexanediamide] were synthesized successfully. These metal complexes were characterized by Fourier transform infrared, ultraviolet visible spectrometry, proton nuclear magnetic resonance spectroscopy, and mass Spectrometry, CHNS and thermogravimetric analysis. The elemental analysis confirms the structures for Mn(II), Co(II) and Ni(II) complexes similar to octahedral geometry, Cu(II) complexes as a square planar geometry and Zn(II) complexes in the tetrahedral geometry. The molar conductivities of all the metal complexes were taken in 10−3 M DMSO, and values of all the metal complexes showed their electrolytic nature which indicates the presence of chloride ions. Thermal analysis supports as the metal complexes are thermally stable. The result of antimicrobial activity against various microorganisms confirms that the metal complexes are potent bactericides and fungicides than the ligand. Metal complexes of LO with Cu(II) and Zn(II) were found to be highly active against S. typhimurium than the complexes of LM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tang, J.K., Li, Y.Z., Wang, Q.L., Gao, E.Q., Liao, D.Z., Jiang, Z.H., Yan, S.P., Cheng, P., Wang, L.F., Wang, G.L., Synthesis: crystal structure, and magnetic properties of the first nonanuclear lanthanide (III)–copper (II) complexes of macrocyclic oxamide [NaLn2Cu6](macrocyclic oxamide = 1, 4, 8, 11-tetraazacyclotradecanne-2, 3-dione, Ln = Pr, Nd). Inorg. Chem. 41, 2188–2192 (2002)

    Article  CAS  Google Scholar 

  2. Tang, J.K., Wang, L.Y., Zhang, L., Gao, E.Q., Liao, D.Z., Jiang, Z.H., Yan, S.P., Cheng, P.: Heterobinuclear copper (II)–manganese (II) complexes behaving as three-dimensional supramolecular networks via both macrocyclic oxamido-bridges and hydrogen bonds. J. Chem. Soc. Dalton Trans. 8, 1607–1612 (2002)

    Article  Google Scholar 

  3. Sun, Y.Q., Liang, M., Dong, W., Yang, G.M., Liao, D.Z., Jiang, Z.H., Yan, S.P., Cheng, P: Hydrothermal, syntheses, crystal structures, magnetism and fluorescence quenching of oxamidato-bridged pentanuclear CuII4LnIII complexes containing macrocyclic ligands (Ln = Eu, Tb) and the crystal structure of a hexanuclear NiII5SmIII complex. ‎Eur. J. Inorg. Chem. 7, 1514–1521 (2004)

    Article  Google Scholar 

  4. Gao, E.Q., Tang, J.K., Liao, D.Z., Jiang, Z.H., Yan, S.P., Wang, G.L.: A new class of heterobinuclear complexes: crystal structure and magnetism of copper (II)-nickel (II) complexes Incorporating two different macrocyclic ligands. Helv. Chim. Acta 84, 908–917 (2001)

    Article  CAS  Google Scholar 

  5. Tang, J.K., Wang, Q.L., Gao, E.Q., Chen, J.T., Liao, D.Z., Jiang, Z.H., Cheng, P.: First crystal structure of a (µ-oxamidato) tricopper (II) metal (II)-type tetranuclear complex: synthesis, crystal structure, and magnetism of a copper (II) manganese (II) complex ([CuII3MnII (µ-L) 3](N3) 2⋅ EtOH) incorporating a macrocyclic oxamide ligand L (macrocyclic oxamide = 1, 4, 8, 11-tetraazacyclotetradecane-2, 3-dione). Helv. Chim. Acta 85, 175–182 (2002)

    Article  CAS  Google Scholar 

  6. Sibert, J.W., Cory, A.H., Cory, J.G.: Lipophilic derivatives of cyclam as new inhibitors of tumor cell growth. Chem. Commun. (2002). https://doi.org/10.1039/B107899M

    Article  Google Scholar 

  7. De Leon-Rodriguez, L.M., Ortiz, A., Weiner, L.A., Zhang, S., Kovacs, Z., Kodadek, T., Sherry, A.D.: Magnetic resonance imaging detects a specific peptide-protein binding event. J. Am. Chem. Soc. 124, 3514–3515 (2002)

    Article  Google Scholar 

  8. Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B.: Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999)

    Article  CAS  Google Scholar 

  9. Beeby, A., Bushby, L.M., Maffeo, D., Williams, J.G.: Intramolecular sensitisation of lanthanide (III) luminescence by acetophenone-containing ligands: the critical effect of para-substituents and solvent. J. Chem Soc. Dalton Trans. (2002). https://doi.org/10.1039/B105966C

    Article  Google Scholar 

  10. Burrows, C.J., Muller, J.G.: Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 98, 1109–1152 (1998)

    Article  CAS  Google Scholar 

  11. Shih, H.C., Tang, N., Burrows, C.J., Rokita, S.E.: Nickel-based probes of nucleic acid structure bind to guanine N7 but do not perturb a dynamic equilibrium of extra helical guanine residues. J. Am. Chem. Soc. 120, 3284–3288 (1998)

    Article  CAS  Google Scholar 

  12. Moghaddas, S., Hendry, P., Geue, R.J., Qin, C., Bygott, A.M., Sargeson, A.M., Dixon, N.E.: Interaction of substituted cobalt (III) cage complexes with DNA. Dalton Trans. (2000). https://doi.org/10.1039/B003008M

    Article  Google Scholar 

  13. Robson, D.A., Rees, L.H., Mountford, P., Schroder, M.: An unprecedented coordination mode for hemilabile pendant-arm 1, 4, 7-triazacyclononanes and the synthesis of cationic organoaluminium complexes. Chem. Commun. 1269, 1269–1270 (2000)

    Article  Google Scholar 

  14. Ehrlich, L.A., Skrdla, P.J., Jarrell, W.K., Sibert, J.W., Armstrong, N.R., Saavedra, S.S., Barrett, A.G., Hoffman, B.M.: Preparation of polyetherol-appended sulfur porphyrazines and investigations of peripheral metal ion binding in polar solvents. Inorg. Chem. 39, 3963–3969 (2000)

    Article  CAS  Google Scholar 

  15. Ho, Y.P., Au-Yeung, S.C., To, K.K.: Platinum-based anticancer agents: innovative design strategies and biological perspectives. Med. Res. Rev. 23, 633–655 (2003)

    Article  CAS  Google Scholar 

  16. Bhandari, A., Li, B., Gallop, M.A.: Solid-phase synthesis of pyrrolo [3, 4-b] pyridines and related pyridine-fused heterocycles. Synthesis 11, 1951–1960 (1999)

    Article  Google Scholar 

  17. Grosche, P., Höltzel, A., Walk, T.B., Trautwein, A.W., Jung, G.: Pyrazole, pyridine and pyridone synthesis on solid support. Synthesis 11, 1961–1970 (1999)

    Article  Google Scholar 

  18. Gordeev, M.F., Patel, D.V., Wu, J., Gordon, E.M.: Approaches to combinatorial synthesis of heterocycles: solid phase synthesis of pyridines and pyrido [2, 3-d] pyrimidines. Tetrahedron Lett. 37, 4643–4646 (1996)

    Article  CAS  Google Scholar 

  19. Bencini, A., Benelli, C., Fabretti, A.C., Franchini, G., Gatteschi, D.: Magnetic properties and crystal structure of a linear-chain copper (II) compound with bridging acetate and oxamidate ligands. Inorg. Chem. 25, 1063–1066(1986)

    Article  CAS  Google Scholar 

  20. Comba, P., Luther, S.M., Maas, O., Pritzkow, H., Vielfort, A.: Template synthesis of a tetraazamacrocyclic ligand with two pendant pyridinyl groups: properties of the isomers of the metal-free ligand and of their first-row transition metal compounds. Inorg. Chem. 40, 2335–2345 (2001)

    Article  CAS  Google Scholar 

  21. Singh, D.P., Malik, V., Kumar, R., Singh, J.: Synthesis, spectroscopic, and antibacterial activity of tetraazamacrocyclic complexes of trivalent chromium, manganese, and iron. J. Enzym. Inhib. Med. Chem. 24, 1201–1206 (2009)

    Article  CAS  Google Scholar 

  22. Herrera, A.M., Kalayda, G.V., Disch, J.S., Wikstrom, J.P., Korendovych, I.V., Staples, R.J., Campana, C.F., Nazarenko, A.Y., Haas, T.E., Rybak-Akimova, E.V.: Reactions at the azomethine C = N bonds in the nickel (II) and copper (II) complexes of pyridine-containing Schiff-base macrocyclic ligands. Dalton Trans. (2003). https://doi.org/10.1039/b308557k

    Article  Google Scholar 

  23. Zhang, Z., Nair, S.A., McMurry, T.J.: Gadolinium meets medicinal chemistry: MRI contrast agent development. Curr. Med. Chem. 12, 751–778 (2005)

    Article  CAS  Google Scholar 

  24. Gulerman, N.N., Rollas, S., Erdeniz, H., Kiraz, M.: Anti-bacterial, anti-fungal and anti-mycobacterial activities of some substituted thiosemicarbazides and 2, 5-disubstituted-1, 3, 4-thiadiazoles. J. Pharm. Sci. 26, 1–5 (2001)

    CAS  Google Scholar 

  25. Salavati-Niasari, M., Najafian, H.: One-pot template synthesis and properties of Ni (II) complexes of 16-membered hexaaza macrocycles. Polyhedron 22, 2633–2638 (2003)

    Article  CAS  Google Scholar 

  26. Negwer, M.: Organic-Chemical Drugs and their Synonyms, 8th edn., p. 4254. Wiley, Berlin (2001)

    Google Scholar 

  27. Narasimhan, B., Belsare, D., Pharande, D., Mourya, V., Dhake, A.: Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. Eur. J. Med. Chem. 39, 827 (2004)

    Article  CAS  Google Scholar 

  28. Milne, G.W.A.: CRC Hand Book of Pesticides. CRC Press, Boca Raton (1995). ISBN 0849324475

    Google Scholar 

  29. Jhaumeer-Laulloo, S., Bhowon, M.G., Hosany, A., Synthesis, catalytic and antibacterial activity of ruthenium complexes of 2, 2′-dithiobis [N-(2-hydroxy-naphth-3-yl) benzamides. J. Ind. Chem. 81, 547–551 (2004)

    CAS  Google Scholar 

  30. Chandra, S.: Spectroscopic, redox and biological activities of transition metal complexes with ons donor macrocyclic ligand derived from semicarbazide and thiodiglycolic acid. Spectrochim. Acta A 60, 2153–2162 (2004)

    Article  Google Scholar 

  31. Shakir, M., Varkey, S.P.: A new synthetic route for the preparation of a new series of 14-22-membered tetraoxomacrocyclic tetraamines and their transition metal complexes. Polyhedron 14, 1117–1127 (1995)

    Article  CAS  Google Scholar 

  32. Mishra, A., Kaushik, N.K., Verma, A.K., Gupta, R.: Synthesis, characterization and antibacterial activity of cobalt (III) complexes with pyridine–amide ligands. Eur. J. Med. Chem. 43, 2189–2196 (2008)

    Article  CAS  Google Scholar 

  33. Avaji, P.G., Patil, S.A., Badami, P.S.: Synthesis, spectral, thermal, solid-state DC electrical conductivity and biological studies of Co (II) complexes with Schiff bases derived from 3-substituted-4-amino-5-hydrazino-1, 2, 4-triazole and substituted salicylaldehydes. Trans. Met. Chem. 33, 275–283 (2008)

    Article  CAS  Google Scholar 

  34. Cronin, L., McGregor, P.A., Parsons, S., Teat, S., Gould, R.O., White, V.A., Long, N.J., Robertson, N.: Synthesis, structure, and complexation of a large 28-mer macro cycle containing two binding sites for either anions or metal ions. Inorg. Chem. 43, 8023–8029 (2004)

    Article  CAS  Google Scholar 

  35. Chandra, S., Gupta, L.K., Agrawal, S.: Synthesis spectroscopic and biological approach in the characterization of novel [N 4] macrocyclic ligand and its transition metal complexes. Met. Chem. 32, 558–563 (2007)

    Article  CAS  Google Scholar 

  36. Kareem, A., Khan, M.S., Nami, S.A., Bhat, S.A., Mirza, A.U., Nishat, N.: Curcumin derived Schiff base ligand and their transition metal complexes: synthesis, spectral characterization, catalytic potential and biological activity. ‎J. Mol. Struct. 1167, 261–273 (2018)

    Article  CAS  Google Scholar 

  37. Sharma, K.K., Singh, R., Fahmi, N., Singh, R.V.: Synthesis, coordination behavior, and investigations of pharmacological effects of some transition metal complexes with ionized Schiff bases. J. Coord. Chem. 63, 3071–3082 (2010)

    Article  CAS  Google Scholar 

  38. Jain, D., Sarkar, A., Chandra, S., Chandra, R.: Synthesis of complexes of some transition metals with nitrogen donor macrocyclic ligands. Synth. React. Inorg. Met.-Org. Chem. 33, 1911–1926 (2003)

    Article  CAS  Google Scholar 

  39. Prokhorov, A., Bernard, H., Bris, N.L., Marquet, N., Handel, H.: Synthesis of a new ditopic ligand possessing linear and cyclic tetraaza subunits. Synth. Commun. 38, 1589–1600 (2008)

    Article  CAS  Google Scholar 

  40. Chandra, S., Gupta, L.K.: Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide. Spectrochim. Acta. A 62, 453–460 (2005)

    Article  Google Scholar 

  41. Agarwal, R.K., Singh, L., Sharma, D.K.: Synthesis, spectral, and biological properties of copper (II) complexes of thiosemicarbazones of Schiff bases derived from 4-aminoantipyrine and aromatic aldehydes. Bioinorg. Chem. Appl. (2006). https://doi.org/10.1155/BCA/2006/59509

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tanabe, Y., Sugano, S.: On the absorption spectra of complex ions II. J. Phys. Soc. Jpn. 9, 766–779 (1954)

    Article  CAS  Google Scholar 

  43. Lever, A.B.P.: Inorganic electronic spectroscopy. Elsevier, Amsterdam (1968)

    Google Scholar 

  44. Khan, S.A., Nami, S.A., Bhat, S.A., Kareem, A., Nishat, N.: Design and development of several polymeric metaleorganic frameworks, spectral characterization, and their antimicrobial activity. C R Chim. (2018). https://doi.org/10.1016/j.crci.2018.07.003

    Article  Google Scholar 

  45. Mirza, A.U., Kareem, A., Nami, S.A., Khan, M.S., Rehman, S., Bhat, S.A., Mohammad, A., Nishat, N.: Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: characterization, antibacterial and antioxidant activity. J. Photochem. Photobiol. B 185, 262–274 (2018)

    Article  CAS  Google Scholar 

  46. Khan, S.A., Nami, S.A., Bhat, S.A., Kareem, A., Nishat, N.: Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn (II), Co (II), Ni (II), Cu (II) and Zn (II). Microb. Pathog. 110, 414–425 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors Shahnawaz Ahmad Bhat, Abdul kareem and Azar Ullah Mirza thanks University Grants Commission (Grant No. 2015), New Delhi, for the financial support, and thankful to Department of Chemistry, Jamia Millia Islamia, New Delhi and Central Instrumentation facility, Jamia Millia Islamia, New Delhi for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Nishat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishat, N., Bhat, S.A., Kareem, A. et al. Synthesis, characterization and biological analysis of transition metal complexes with macro cyclic ligands derived from adipic acid, ethylenediamine with diethyloxalate and diethylmalonate. J Incl Phenom Macrocycl Chem 92, 395–409 (2018). https://doi.org/10.1007/s10847-018-0849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0849-2

Keywords

Navigation