Skip to main content

Silica-Based Tumor-targeted Systems

  • Chapter
  • First Online:
New Nanomaterials and Techniques for Tumor-targeted Systems

Abstract

In recent decades, silica-based nanomaterials have emerged as a kind of novel and multifunctional drug delivery systems (DDSs), expanding new applications in inorganic materials as well as laying a foundation for organic–inorganic hybrids tumor-targeted DDS. Silica-based delivery systems especially mesoporous ones exhibit attractive characteristics, which guarantee the high loading of diverse cargo molecules for biosensing, drug delivery, tumor imaging, nanocatalysis, and so on. Here, we categorized these silica-based DDSs according to their morphology and composition, hoping to provide a more concise and detailed insight into this potential material on current trends both in lab and clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carsten O et al (2001) Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J Control Release 77(3):345–355

    Article  Google Scholar 

  2. Barbe C et al (2004) Silica particles: a novel drug-delivery system. Adv Mater 128:1959–1966

    Article  CAS  Google Scholar 

  3. Jing W et al (2011) Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J Am Chem Soc 133:20369–20377

    Article  CAS  Google Scholar 

  4. Rui L et al (2010) pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J Am Chem Soc 132:1500–1501

    Article  CAS  Google Scholar 

  5. Roman AP et al (2017) Silica-based multifunctional nanodelivery systems toward regenerative medicine. Mater Horiz 4:772–799

    Article  Google Scholar 

  6. Liu P et al (2008) Preparation and characterization of conducting polyaniline/silica nanosheet composites. Curr Opinion Solid State Mater Sci 12(1):9–13

    Article  CAS  Google Scholar 

  7. Lyuleeva A et al (2017) Lewis acid induced functionalization of photoluminescent 2D silicon nanosheets for the fabrication of functional hybrid films. Adv Funct Mater 27:6711–6718

    Google Scholar 

  8. Wang ZM et al (2010) Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels. ACS Nano 4(12):7437–7450

    Article  CAS  PubMed  Google Scholar 

  9. Yi W et al (2013) Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 135(12):4799–4804

    Article  CAS  Google Scholar 

  10. Xu J et al (2017) Integration of IR-808 sensitized upconversion nanostructure and MoS2 nanosheet for 808 nm NIR light triggered phototherapy and bioimaging. Small 13(36):6090864

    Article  CAS  Google Scholar 

  11. Chen YW et al (2016) A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale 8(25):12648–12657

    Article  CAS  PubMed  Google Scholar 

  12. Petros RA et al (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627

    Article  CAS  PubMed  Google Scholar 

  13. Vikash P et al (2011) Fluorescent nanorods and nanospheres for real time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed Eng 50(48):11417–11420

    Article  CAS  Google Scholar 

  14. Huang X et al (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31(3):438–448

    Article  CAS  PubMed  Google Scholar 

  15. Wu XJ et al (2011) A unique transformation route for synthesis of rodlike hollow mesoporous silica particles. J Phys Chem C 115(23):11342–11347

    Article  CAS  Google Scholar 

  16. Yang G et al (2014) Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. Nano Res 8(3):751–764

    Article  CAS  Google Scholar 

  17. You Y et al (2017) High-drug-loading mesoporous silica nanorods with reduced toxicity for precise cancer therapy against nasopharyngeal carcinoma. Adv Funct Mater 27(42):1703313

    Article  CAS  Google Scholar 

  18. Shun S et al (2013) Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 12:3150–3158

    Article  CAS  Google Scholar 

  19. Peng F et al (2013) Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew Chem 125(5):1497–1501

    Article  Google Scholar 

  20. Li YS et al (2014) Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv Mater 20:3176–3205

    Article  CAS  Google Scholar 

  21. Yang X et al (2016) Synthesis of hollow mesoporous silica nanorods with controllable aspect ratios for intracellular triggered drug release in cancer cells. ACS Appl Mater Interfaces 8(32):20558–20569

    Article  CAS  PubMed  Google Scholar 

  22. Hu J et al (2012) Fabrication, properties and applications of Janus particles. Chem Soc Rev 11:4356–4378

    Article  CAS  Google Scholar 

  23. Li X et al (2014) Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J Am Chem Soc 136(42):15086–15092

    Article  CAS  PubMed  Google Scholar 

  24. Shao D et al (2016) Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy. Biomaterials 100:118–133

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L et al (2016) Tailored synthesis of octopus-type Janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew Chem Int Ed Eng 55(6):2118–2121

    Article  CAS  Google Scholar 

  26. Wang Z et al (2017) Janus silver/silica nanoplatforms for light-activated liver cancer chemo/photothermal therapy. ACS Appl Mater Interfaces 9(36):30306–30317

    Article  CAS  PubMed  Google Scholar 

  27. Parrill TM et al (1992) Transmission infrared study of Acie-catalyzed catalyzed sol-gel silica coatings during room ambient drying. J Biomed Mater Res A 7:2230–2239

    CAS  Google Scholar 

  28. Fang X et al (2013) Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 5(6):2205–2218

    Article  CAS  PubMed  Google Scholar 

  29. Fei P et al (2016) From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Adv Energy Mater 6:1502539

    Article  CAS  Google Scholar 

  30. Qiao Z et al (2009) Self-templated synthesis of hollow nanostructures. NanoToday 6:494–507

    Google Scholar 

  31. Zhang J et al (2008) Permeable silica shell through surface-protected etching. Nano Lett 8:2867–2871

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J et al (2017) Degradable hollow mesoporous silicon/carbon nanoparticles for photoacoustic imaging-guided highly effective chemo-thermal tumor therapy in vitro and in vivo. Theranostics 7(12):3007–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu XJ et al (2014) Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells. J Mater Chem B 2:5358–5367

    Article  CAS  PubMed  Google Scholar 

  34. Yang J et al (2020) Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics 10(2):615–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y et al (2014) Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv Mater 26(20):3176–3205

    Article  CAS  PubMed  Google Scholar 

  36. Qian XQ et al (2019) Manganese-based functional nanoplatforms: nanosynthetic construction, physiochemical property, and theranostic applicability. Adv Funct Mater 30(9):1907066

    Google Scholar 

  37. Gao Y et al (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5(12):9788–9798

    Article  CAS  PubMed  Google Scholar 

  38. Yang G et al (2018) Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett 18(4):2475–2484

    Article  CAS  PubMed  Google Scholar 

  39. Liu J et al (2016) Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials 83:51–65

    Article  CAS  PubMed  Google Scholar 

  40. Chen YS et al (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11(2):348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen YS et al (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ming T et al (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett 9(11):3896–3903

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Z et al (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24(11):1418–1423

    Article  CAS  PubMed  Google Scholar 

  44. Liu J et al (2015) Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv Funct Mater 25(3):384–392

    Article  CAS  Google Scholar 

  45. Liu J et al (2018) Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 157:107–124

    Article  CAS  PubMed  Google Scholar 

  46. Rastinehad AR et al (2019) Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. PNAS 116(37):18590–18596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cui Y et al (2012) Mesoporous silica nanoparticles capped with disulfide-linked PEG gatekeepers for glutathione-mediated controlled release. ACS Appl Mater Interfaces 4(6):3177–3183

    Article  CAS  PubMed  Google Scholar 

  48. Li C et al (2018) Side effects-avoided theranostics achieved by biodegradable magnetic silica-sealed mesoporous polymer-drug with ultralow leakage. Biomaterials 186:1–7

    Article  CAS  PubMed  Google Scholar 

  49. Li J et al (2019) Photocontrolled SiRNA delivery and biomarker-triggered luminogens of aggregation-induced emission by up-conversion NaYF4:Yb3+Tm3+@SiO2 nanoparticles for inducing and monitoring stem-cell differentiation. ACS Appl Mater Interfaces 11(25):22074–22084

    Article  CAS  PubMed  Google Scholar 

  50. Yadong Y et al (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  CAS  Google Scholar 

  51. Liu J et al (2010) Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew Chem Int Ed 49:4981–4985

    Article  CAS  Google Scholar 

  52. Chen F et al (2018) General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Res 11:4890–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu J et al (2018) Multifunctional yolk-shell mesoporous silica obtained via selectively etching the shell: a therapeutic nanoplatform for cancer therapy. ACS Appl Mater Interfaces 10(29):24440–24449

    Article  CAS  PubMed  Google Scholar 

  54. Pei Y et al (2018) An autonomous tumor-targeted nanoprodrug for reactive oxygen species-activatable dual cytochrome c/doxorubicin antitumor therapy. Nanoscale 10:11418–11429

    Article  CAS  PubMed  Google Scholar 

  55. Lv R et al (2015) A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano 9(2):1630–1647

    Article  CAS  PubMed  Google Scholar 

  56. Liu J et al (2011) Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun 47:12578–12591

    Article  CAS  Google Scholar 

  57. Teng Z et al (2014) Yolk−shell structured mesoporous nanoparticles with thioether-bridged organosilica frameworks. Chem Mater 26(20):5980–5987

    Article  CAS  Google Scholar 

  58. Tang FQ et al (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 12:1504–1534

    Article  CAS  Google Scholar 

  59. Nikola Ž et al (2015) Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. Nanoscale 7:2199–2209

    Article  CAS  Google Scholar 

  60. Gao F et al (2009) Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J Phys Chem B 113(6):1796–1804

    Article  CAS  PubMed  Google Scholar 

  61. Na HK et al (2012) Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small 8(11):1752–1761

    Article  CAS  PubMed  Google Scholar 

  62. Huo M et al (2017) Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat Commun 8:357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wang Y et al (2012) Tumor cell targeted delivery by specific peptide-modified mesoporous silica nanoparticles. J Mater Chem 22:14608–14616

    Article  CAS  Google Scholar 

  64. Shi J et al (2017) An MSN-PEG-IP drug delivery system and IL13Rα2 as targeted therapy for glioma. Nanoscale 9:8970–8981

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y et al (2014) A general strategy for dual-triggered combined tumor therapy based on template semi-graphitized mesoporous silica nanoparticles. Adv Healthc Mater 3(4):485–489

    Article  PubMed  CAS  Google Scholar 

  66. Wang K et al (2015) Specific aptamer-conjugated mesoporous silica–carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy. Acta Biomater 16:196–205

    Article  CAS  PubMed  Google Scholar 

  67. Wang Y et al (2016) Facile growth of well-dispersed and ultra-small MoS2 nanodots in ordered mesoporous silica nanoparticles. Chem Commun 52:10217–10220

    Article  CAS  Google Scholar 

  68. Wang Y et al (2016) Facile incorporation of dispersed fluorescent carbon nanodots into mesoporous silica nanosphere for pH-triggered drug delivery and imaging. Carbon 108:146–153

    Article  CAS  Google Scholar 

  69. Qian M et al (2019) Biodegradable mesoporous silica achieved via carbon nanodots-incorporated framework swelling for debris-mediated photothermal synergistic immunotherapy. Nano Lett 19(12):8409–8417

    Article  CAS  PubMed  Google Scholar 

  70. Zhao J et al (2018) Outside-in synthesis of mesoporous silica/molybdenum disulfide nanoparticles for antitumor application. Chem Eng J 351(1):157–168

    Article  CAS  Google Scholar 

  71. Chen Y et al (2016) Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks. Adv Mater 28(17):3235–3272

    Article  CAS  PubMed  Google Scholar 

  72. Jonas GC et al (2017) Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 29(9):1604634

    Article  CAS  Google Scholar 

  73. Chihiro U et al (2011) Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks. J Am Chem Soc 133(21):8102–8105

    Article  CAS  Google Scholar 

  74. Fatieiev Y et al (2015) Enzymatically degradable hybrid organic–inorganic bridged silsesquioxane nanoparticles for in vitro imaging. Nanoscale 7:15046–15050

    Article  CAS  PubMed  Google Scholar 

  75. Jonas C et al (2015) One-pot construction of multipodal hybrid periodic mesoporous organosilica nanoparticles with crystal-like architectures. Adv Mater 27:145–149

    Article  CAS  Google Scholar 

  76. Igor IS et al (2009) Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 5(1):57–62

    Article  CAS  Google Scholar 

  77. Manuel Q, Carlos M, Pablo B (2013) Hybrid PLGA-organosilica nanoparticles with redox-sensitive molecular gates. Chem Mater 25(13):2597–2602

    Article  CAS  Google Scholar 

  78. Wu M et al (2015) A salt-assisted acid etching strategy for hollow mesoporous silica/organosilica for pH-responsive drug and gene co-delivery. J Mater Chem B 3:766–775

    Article  CAS  PubMed  Google Scholar 

  79. Li L et al (2019) In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv Funct Mater 30(4):1907716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen Y et al (2014) Hollow mesoporous organosilica nanoparticles: a generic intelligent framework-hybridization approach for biomedicine. J Am Chem Soc 136(46):16326–16334

    Article  CAS  PubMed  Google Scholar 

  81. Teng Z et al (2018) Deformable hollow periodic mesoporous organosilica nanocapsules for significantly improved cellular uptake. J Am Chem Soc 140(4):1385–1393

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, W., Qian, M., Zhang, X., Wang, Y. (2020). Silica-Based Tumor-targeted Systems. In: Huang, R., Wang, Y. (eds) New Nanomaterials and Techniques for Tumor-targeted Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-5159-8_8

Download citation

Publish with us

Policies and ethics