Skip to main content
Log in

Preparation and characterization of β-sitosterol/β-cyclodextrin crystalline inclusion complexes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Inclusion complexes of β-sitosterol and β-cyclodextrin were prepared by mixing an equimolar ratio of the components in distilled water followed by freeze-drying. The solid state complexes were characterized by differential scanning calorimetry, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Physical mixtures of the two components showed two distinct melting endothermic peaks at 139 and 169 °C. The two melting peaks were attributable to the individual component (i.e., β-sitosterol and β-cyclodextrin). The inclusion complex, however, shows a single sharp melting endothermic peak at 186 °C indicating the formation of a crystalline complex. Scanning electron micrographs show the formation of well-defined needle-like crystals for the inclusion complexes. The crystalline inclusion complexes were readily soluble in water. The inclusion complexes were characterized in the solution state by nuclear magnetic resonance (NMR) spectroscopy. The continuous variation method, using NMR data, suggests the formation of a 1:1 β-sitosterol to β-cyclodextrin inclusion complex. Cross peaks observed in the rotating-frame overhauser effect spectroscopy NMR spectra suggests that both ends of the β-sitosterol i.e., the aliphatic tail and the cyclic head were encapsulated within the β-cyclodextrin cavity. Computational modeling on the inclusion complexes carried out using density functional theory support the conclusions obtained from NMR spectroscopy. The results of the study show that the β-sitosterol and β-cyclodextrin form water soluble inclusion complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Awad, A.B., Fink, C.S.: Phytosterols as anticancer dietary components: evidence and mechanism of action. Am. Soc. Nutri. Sci. 130, 2127–2130 (2000)

    CAS  Google Scholar 

  2. Ifere, O.G., Equan, A., Gordon, K., Nagappan, P., Igiesteme, J., Ananaba, G.: Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene. Cancer Epidemiol. 34, 461–471 (2010)

    Article  CAS  Google Scholar 

  3. Greenberg-Ofarth, N., Terepolosky, Y., Kahane, I., Bar, R.: Cyclodextrins as carriers of cholesterol and fatty acids in cultivation of mycoplasmas. Appl. Environ. Microbiol. 59, 547–551 (1993)

    Google Scholar 

  4. Awad, A., Williams, H., Fink, C.: Effect of phytosterols on cholesterol metabolism and MAP kinase in MDA-MB-231 human breast cancer cells. J. Nutr. Biochem. 14, 111–119 (2003)

    Article  CAS  Google Scholar 

  5. Fermeglia, M., Ferrone, M., Lodi, A., Pricl, S.: Host-guest inclusion complexes between anticancer drugs and beta-cyclodextrin: computational studies. Carbohydr. Polym. 53, 15–44 (2003)

    Article  CAS  Google Scholar 

  6. Lemesle-Lamache, V., Wouessidjewe, D., Cheron, M., Duchene, D.: Study of β-cyclodextrin and ethylated β-cyclodextrin salbutamol complexes, in vitro evaluation of sustained-release behaviour of salbutamol. Int. J. Pharm. 141, 117–124 (1996)

    Article  CAS  Google Scholar 

  7. Rajewski, R.A., Stella, V.J.: Pharmaceutical application of cyclodextrins 2. In-vivo Drug delivery. J. Pharm. Sci. 85, 1142–1169 (1996)

    Article  CAS  Google Scholar 

  8. Loftsson, T., Brewster, M.E.: Pharmaceutical application of cyclodextrins 1. Solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  9. Ritger, I.M., Schipper, H.G., Koopmans, R.P., van Kan, H.J.M., Frijlink, H.W., Kager, P.A., Guchelaar, H.-J.: Relative bioavilability of three newly developed albendazole formulations: a randomized crossover study with healthy volunteers. Antimicrob. Agents Chemother. 48, 1051 (2004)

    Article  Google Scholar 

  10. Uekama, K.: Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 52, 900–915 (2004)

    Article  CAS  Google Scholar 

  11. Szenta, L., Szetjli, J.: Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. Drug Deliv. Rev. 36, 17–28 (1999)

    Article  Google Scholar 

  12. Koontz, J., Marcy, J., O’keefe, S., Duncan, S.: Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants α-tocopherol and quercetin. J. Agric. Food Chem. 57, 1162–1171 (2009)

    Article  CAS  Google Scholar 

  13. Meng, X., Pan, Q., Liu, Y.: Preparation and properties of phytosterols with hydroxypropyl β-cyclodextrin inclusion complexes. Eur. Food Res. Technol. 235, 1039–1047 (2012)

    Article  CAS  Google Scholar 

  14. Ficarra, R., Tommasini, S., Raneri, D., Calabro, M.L., Di Bella, M.R., Rustichelli, C., Gamberini, M.C., Ficarra, P.: Study of flavonoids/beta-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. J. Pharm. Biomed. Anal. 29, 1005–1014 (2002)

    Article  CAS  Google Scholar 

  15. Liu, B., Jian, Z., Liu, Y., Zhu, X., Zeng, J.: Physiochemical properties of the inclusion complex of puuerarin and glucosyl-beta-cyclodextrin. J. Agric. Food Chem. 60, 12501–12507 (2012)

    Article  CAS  Google Scholar 

  16. Singh, R., Bharti, N., Madan, J., Hiremath, S.N.: Characterization of cyclodextrin inclusion complexes: a review. J. Pharm. Sci. Technol. 2(3), 171–183 (2010)

    CAS  Google Scholar 

  17. Jadhav, G.S., Vavia, P.R.: Physicochemical in silico and in vivo evaluation of a danazol-β-cyclodextrin complex. Int. J. Pharm. 352, 5–16 (2008)

    Article  CAS  Google Scholar 

  18. Sinha, V.R., Anitha, R., Ghosh, S., Nanda, A., Kumaria, R.: Complexation of celecoxib with β-cyclodextrin: characterization of the interaction in solution and in solid state. J. Pharm. Sci. 94, 676–687 (2005)

    Article  CAS  Google Scholar 

  19. Wang, J., Cao, Y., Sun, B., Wang, C.: Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin. Food Chem. 124(3), 1069–1075 (2011)

    Article  CAS  Google Scholar 

  20. Franco, C., Schwingel, L., Lula, I., Koester, L.S., Sinisterra, R.D., Bassani, V.L.: Studies on coumestrol/β-cyclodextrin: inclusion complex characterization. Int. J. Pharm. 369, 5–11 (2009)

    Article  CAS  Google Scholar 

  21. Kim, H., Choi, J., Jun, S.: Inclusion complexes of modified cyclodextrins with some flavonols. J. Incl. Phenom. Macrocycl. Chem. 64, 43–47 (2009)

    Article  CAS  Google Scholar 

  22. Astilean, S., Ionescu, C., Cristea, G.H., Farcas, S.I., Bratu, I., Vitoc, R.: NMR spectroscopy of inclusion complex of sodium diclofenac with beta-cyclodextrin in aqueous solution. Biospectroscopy 3, 233–239 (1997)

    Article  CAS  Google Scholar 

  23. Sompornpisut, P., Deechalao, N., Vongsvivut, J.: An inclusion complex of beta-cyclodextrin-l-phenylalanine: 1H NMR and molecular docking studies. ScienceAsia 28, 263–270 (2002)

    Article  CAS  Google Scholar 

  24. Nguyen, T.A., Liu, B., Zhao, J., Thomas, D.S., Hook, J.M.: An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chem. 136, 186–192 (2013)

    Article  CAS  Google Scholar 

  25. Lasonder, E., Weringa, W.D.: An NMR and DSC study of the interaction of phospholipid vesicles with some anti-inflammoatory agents. J. Colloid Interface Sci. 139, 469–478 (1990)

    Article  CAS  Google Scholar 

  26. Upadhyay, S.K., Kumar, G.: NMR and molecular modelling studies on the interaction of fluconazole with beta-cyclodextrin. Chem. Cent. J. 3, 1–9 (2009)

    Article  Google Scholar 

  27. Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–125 (1925)

    Google Scholar 

  28. Whang, H.S., Venedeix, F.A.P., Gracz, H.S., Gadsby, J., Tonelli, A.: NMR studies of the inclusion complex of cloprostenol sodium salt with beta-cyclodextrin in aqueous solution. Pharm. Res. 25, 1142–1149 (2008)

    Article  CAS  Google Scholar 

  29. Nishijo, J., Moriyama, S., Shiota, S.: Interactions of chloesterol with cyclodextrins in aqueous solution. Chem. Pharm. Bull. 51, 1253–1257 (2003)

    Article  CAS  Google Scholar 

  30. Cruz, J.R., Becker, B.A., Morris, K.F., Larive, C.K.: NMR characterization of the host-guest inclusion complex between beta-cyclodextrin and doxepin. Magn Reson Chem 46, 838–845 (2008)

    Article  CAS  Google Scholar 

  31. DMol3: Accelrys Material Studio 5.5; Accelrys Software, Inc. (2011)

  32. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  33. Tkatchenko, A., Scheffler, M.: Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005–073008 (2009)

    Article  Google Scholar 

  34. Gunasinghe, R.N., Reuven, D.G., Suggs, K., Wang, X.-Q.: Filled and empty orbital interactions in a planar covalent organic framework on graphene. J. Phys. Chem. Lett. 3, 3048–3052 (2012)

    Article  CAS  Google Scholar 

  35. Hargrove, J., Shashikala, H.B.M., Guerrido, L., Ravi, N., Wang, X.-Q.: Band gap opening in methane intercalated graphene. Nanoscale 4, 4443–4446 (2012)

    Article  CAS  Google Scholar 

  36. Raffaini, G., Ganazzoli, F., Malpezzi, L., Fuganti, C., Fronza, G., Panzeri, W., Mele, A.: Validating a Strategy from molecular dynamics simaulations of cyclodextrin inclusion complexes through single-crystal X-ray and NMR experimental data: a case study. J. Phys. Chem. B 113, 9110–9122 (2009)

    Article  CAS  Google Scholar 

  37. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (Grant Nos. HRD-1137751, DMR120078, and DMR-0934142), Army Research Office (W911NF-12-1-0048) and NIH/NIGMS (Grant No. 2R25GM060414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishrat Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cowins, J., Abimbola, O., Ananaba, G. et al. Preparation and characterization of β-sitosterol/β-cyclodextrin crystalline inclusion complexes. J Incl Phenom Macrocycl Chem 83, 141–148 (2015). https://doi.org/10.1007/s10847-015-0550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0550-7

Keywords

Navigation